ui/node_modules/sucrase/dist/parser/traverser/expression.js

1023 lines
35 KiB
JavaScript

"use strict";Object.defineProperty(exports, "__esModule", {value: true});/* eslint max-len: 0 */
// A recursive descent parser operates by defining functions for all
// syntactic elements, and recursively calling those, each function
// advancing the input stream and returning an AST node. Precedence
// of constructs (for example, the fact that `!x[1]` means `!(x[1])`
// instead of `(!x)[1]` is handled by the fact that the parser
// function that parses unary prefix operators is called first, and
// in turn calls the function that parses `[]` subscripts — that
// way, it'll receive the node for `x[1]` already parsed, and wraps
// *that* in the unary operator node.
//
// Acorn uses an [operator precedence parser][opp] to handle binary
// operator precedence, because it is much more compact than using
// the technique outlined above, which uses different, nesting
// functions to specify precedence, for all of the ten binary
// precedence levels that JavaScript defines.
//
// [opp]: http://en.wikipedia.org/wiki/Operator-precedence_parser
var _flow = require('../plugins/flow');
var _index = require('../plugins/jsx/index');
var _types = require('../plugins/types');
var _typescript = require('../plugins/typescript');
var _index3 = require('../tokenizer/index');
var _keywords = require('../tokenizer/keywords');
var _state = require('../tokenizer/state');
var _types3 = require('../tokenizer/types');
var _charcodes = require('../util/charcodes');
var _identifier = require('../util/identifier');
var _base = require('./base');
var _lval = require('./lval');
var _statement = require('./statement');
var _util = require('./util');
class StopState {
constructor(stop) {
this.stop = stop;
}
} exports.StopState = StopState;
// ### Expression parsing
// These nest, from the most general expression type at the top to
// 'atomic', nondivisible expression types at the bottom. Most of
// the functions will simply let the function (s) below them parse,
// and, *if* the syntactic construct they handle is present, wrap
// the AST node that the inner parser gave them in another node.
function parseExpression(noIn = false) {
parseMaybeAssign(noIn);
if (_index3.match.call(void 0, _types3.TokenType.comma)) {
while (_index3.eat.call(void 0, _types3.TokenType.comma)) {
parseMaybeAssign(noIn);
}
}
} exports.parseExpression = parseExpression;
/**
* noIn is used when parsing a for loop so that we don't interpret a following "in" as the binary
* operatior.
* isWithinParens is used to indicate that we're parsing something that might be a comma expression
* or might be an arrow function or might be a Flow type assertion (which requires explicit parens).
* In these cases, we should allow : and ?: after the initial "left" part.
*/
function parseMaybeAssign(noIn = false, isWithinParens = false) {
if (_base.isTypeScriptEnabled) {
return _typescript.tsParseMaybeAssign.call(void 0, noIn, isWithinParens);
} else if (_base.isFlowEnabled) {
return _flow.flowParseMaybeAssign.call(void 0, noIn, isWithinParens);
} else {
return baseParseMaybeAssign(noIn, isWithinParens);
}
} exports.parseMaybeAssign = parseMaybeAssign;
// Parse an assignment expression. This includes applications of
// operators like `+=`.
// Returns true if the expression was an arrow function.
function baseParseMaybeAssign(noIn, isWithinParens) {
if (_index3.match.call(void 0, _types3.TokenType._yield)) {
parseYield();
return false;
}
if (_index3.match.call(void 0, _types3.TokenType.parenL) || _index3.match.call(void 0, _types3.TokenType.name) || _index3.match.call(void 0, _types3.TokenType._yield)) {
_base.state.potentialArrowAt = _base.state.start;
}
const wasArrow = parseMaybeConditional(noIn);
if (isWithinParens) {
parseParenItem();
}
if (_base.state.type & _types3.TokenType.IS_ASSIGN) {
_index3.next.call(void 0, );
parseMaybeAssign(noIn);
return false;
}
return wasArrow;
} exports.baseParseMaybeAssign = baseParseMaybeAssign;
// Parse a ternary conditional (`?:`) operator.
// Returns true if the expression was an arrow function.
function parseMaybeConditional(noIn) {
const wasArrow = parseExprOps(noIn);
if (wasArrow) {
return true;
}
parseConditional(noIn);
return false;
}
function parseConditional(noIn) {
if (_base.isTypeScriptEnabled || _base.isFlowEnabled) {
_types.typedParseConditional.call(void 0, noIn);
} else {
baseParseConditional(noIn);
}
}
function baseParseConditional(noIn) {
if (_index3.eat.call(void 0, _types3.TokenType.question)) {
parseMaybeAssign();
_util.expect.call(void 0, _types3.TokenType.colon);
parseMaybeAssign(noIn);
}
} exports.baseParseConditional = baseParseConditional;
// Start the precedence parser.
// Returns true if this was an arrow function
function parseExprOps(noIn) {
const startTokenIndex = _base.state.tokens.length;
const wasArrow = parseMaybeUnary();
if (wasArrow) {
return true;
}
parseExprOp(startTokenIndex, -1, noIn);
return false;
}
// Parse binary operators with the operator precedence parsing
// algorithm. `left` is the left-hand side of the operator.
// `minPrec` provides context that allows the function to stop and
// defer further parser to one of its callers when it encounters an
// operator that has a lower precedence than the set it is parsing.
function parseExprOp(startTokenIndex, minPrec, noIn) {
if (
_base.isTypeScriptEnabled &&
(_types3.TokenType._in & _types3.TokenType.PRECEDENCE_MASK) > minPrec &&
!_util.hasPrecedingLineBreak.call(void 0, ) &&
(_util.eatContextual.call(void 0, _keywords.ContextualKeyword._as) || _util.eatContextual.call(void 0, _keywords.ContextualKeyword._satisfies))
) {
const oldIsType = _index3.pushTypeContext.call(void 0, 1);
_typescript.tsParseType.call(void 0, );
_index3.popTypeContext.call(void 0, oldIsType);
_index3.rescan_gt.call(void 0, );
parseExprOp(startTokenIndex, minPrec, noIn);
return;
}
const prec = _base.state.type & _types3.TokenType.PRECEDENCE_MASK;
if (prec > 0 && (!noIn || !_index3.match.call(void 0, _types3.TokenType._in))) {
if (prec > minPrec) {
const op = _base.state.type;
_index3.next.call(void 0, );
if (op === _types3.TokenType.nullishCoalescing) {
_base.state.tokens[_base.state.tokens.length - 1].nullishStartIndex = startTokenIndex;
}
const rhsStartTokenIndex = _base.state.tokens.length;
parseMaybeUnary();
// Extend the right operand of this operator if possible.
parseExprOp(rhsStartTokenIndex, op & _types3.TokenType.IS_RIGHT_ASSOCIATIVE ? prec - 1 : prec, noIn);
if (op === _types3.TokenType.nullishCoalescing) {
_base.state.tokens[startTokenIndex].numNullishCoalesceStarts++;
_base.state.tokens[_base.state.tokens.length - 1].numNullishCoalesceEnds++;
}
// Continue with any future operator holding this expression as the left operand.
parseExprOp(startTokenIndex, minPrec, noIn);
}
}
}
// Parse unary operators, both prefix and postfix.
// Returns true if this was an arrow function.
function parseMaybeUnary() {
if (_base.isTypeScriptEnabled && !_base.isJSXEnabled && _index3.eat.call(void 0, _types3.TokenType.lessThan)) {
_typescript.tsParseTypeAssertion.call(void 0, );
return false;
}
if (
_util.isContextual.call(void 0, _keywords.ContextualKeyword._module) &&
_index3.lookaheadCharCode.call(void 0, ) === _charcodes.charCodes.leftCurlyBrace &&
!_util.hasFollowingLineBreak.call(void 0, )
) {
parseModuleExpression();
return false;
}
if (_base.state.type & _types3.TokenType.IS_PREFIX) {
_index3.next.call(void 0, );
parseMaybeUnary();
return false;
}
const wasArrow = parseExprSubscripts();
if (wasArrow) {
return true;
}
while (_base.state.type & _types3.TokenType.IS_POSTFIX && !_util.canInsertSemicolon.call(void 0, )) {
// The tokenizer calls everything a preincrement, so make it a postincrement when
// we see it in that context.
if (_base.state.type === _types3.TokenType.preIncDec) {
_base.state.type = _types3.TokenType.postIncDec;
}
_index3.next.call(void 0, );
}
return false;
} exports.parseMaybeUnary = parseMaybeUnary;
// Parse call, dot, and `[]`-subscript expressions.
// Returns true if this was an arrow function.
function parseExprSubscripts() {
const startTokenIndex = _base.state.tokens.length;
const wasArrow = parseExprAtom();
if (wasArrow) {
return true;
}
parseSubscripts(startTokenIndex);
// If there was any optional chain operation, the start token would be marked
// as such, so also mark the end now.
if (_base.state.tokens.length > startTokenIndex && _base.state.tokens[startTokenIndex].isOptionalChainStart) {
_base.state.tokens[_base.state.tokens.length - 1].isOptionalChainEnd = true;
}
return false;
} exports.parseExprSubscripts = parseExprSubscripts;
function parseSubscripts(startTokenIndex, noCalls = false) {
if (_base.isFlowEnabled) {
_flow.flowParseSubscripts.call(void 0, startTokenIndex, noCalls);
} else {
baseParseSubscripts(startTokenIndex, noCalls);
}
}
function baseParseSubscripts(startTokenIndex, noCalls = false) {
const stopState = new StopState(false);
do {
parseSubscript(startTokenIndex, noCalls, stopState);
} while (!stopState.stop && !_base.state.error);
} exports.baseParseSubscripts = baseParseSubscripts;
function parseSubscript(startTokenIndex, noCalls, stopState) {
if (_base.isTypeScriptEnabled) {
_typescript.tsParseSubscript.call(void 0, startTokenIndex, noCalls, stopState);
} else if (_base.isFlowEnabled) {
_flow.flowParseSubscript.call(void 0, startTokenIndex, noCalls, stopState);
} else {
baseParseSubscript(startTokenIndex, noCalls, stopState);
}
}
/** Set 'state.stop = true' to indicate that we should stop parsing subscripts. */
function baseParseSubscript(
startTokenIndex,
noCalls,
stopState,
) {
if (!noCalls && _index3.eat.call(void 0, _types3.TokenType.doubleColon)) {
parseNoCallExpr();
stopState.stop = true;
// Propagate startTokenIndex so that `a::b?.()` will keep `a` as the first token. We may want
// to revisit this in the future when fully supporting bind syntax.
parseSubscripts(startTokenIndex, noCalls);
} else if (_index3.match.call(void 0, _types3.TokenType.questionDot)) {
_base.state.tokens[startTokenIndex].isOptionalChainStart = true;
if (noCalls && _index3.lookaheadType.call(void 0, ) === _types3.TokenType.parenL) {
stopState.stop = true;
return;
}
_index3.next.call(void 0, );
_base.state.tokens[_base.state.tokens.length - 1].subscriptStartIndex = startTokenIndex;
if (_index3.eat.call(void 0, _types3.TokenType.bracketL)) {
parseExpression();
_util.expect.call(void 0, _types3.TokenType.bracketR);
} else if (_index3.eat.call(void 0, _types3.TokenType.parenL)) {
parseCallExpressionArguments();
} else {
parseMaybePrivateName();
}
} else if (_index3.eat.call(void 0, _types3.TokenType.dot)) {
_base.state.tokens[_base.state.tokens.length - 1].subscriptStartIndex = startTokenIndex;
parseMaybePrivateName();
} else if (_index3.eat.call(void 0, _types3.TokenType.bracketL)) {
_base.state.tokens[_base.state.tokens.length - 1].subscriptStartIndex = startTokenIndex;
parseExpression();
_util.expect.call(void 0, _types3.TokenType.bracketR);
} else if (!noCalls && _index3.match.call(void 0, _types3.TokenType.parenL)) {
if (atPossibleAsync()) {
// We see "async", but it's possible it's a usage of the name "async". Parse as if it's a
// function call, and if we see an arrow later, backtrack and re-parse as a parameter list.
const snapshot = _base.state.snapshot();
const asyncStartTokenIndex = _base.state.tokens.length;
_index3.next.call(void 0, );
_base.state.tokens[_base.state.tokens.length - 1].subscriptStartIndex = startTokenIndex;
const callContextId = _base.getNextContextId.call(void 0, );
_base.state.tokens[_base.state.tokens.length - 1].contextId = callContextId;
parseCallExpressionArguments();
_base.state.tokens[_base.state.tokens.length - 1].contextId = callContextId;
if (shouldParseAsyncArrow()) {
// We hit an arrow, so backtrack and start again parsing function parameters.
_base.state.restoreFromSnapshot(snapshot);
stopState.stop = true;
_base.state.scopeDepth++;
_statement.parseFunctionParams.call(void 0, );
parseAsyncArrowFromCallExpression(asyncStartTokenIndex);
}
} else {
_index3.next.call(void 0, );
_base.state.tokens[_base.state.tokens.length - 1].subscriptStartIndex = startTokenIndex;
const callContextId = _base.getNextContextId.call(void 0, );
_base.state.tokens[_base.state.tokens.length - 1].contextId = callContextId;
parseCallExpressionArguments();
_base.state.tokens[_base.state.tokens.length - 1].contextId = callContextId;
}
} else if (_index3.match.call(void 0, _types3.TokenType.backQuote)) {
// Tagged template expression.
parseTemplate();
} else {
stopState.stop = true;
}
} exports.baseParseSubscript = baseParseSubscript;
function atPossibleAsync() {
// This was made less strict than the original version to avoid passing around nodes, but it
// should be safe to have rare false positives here.
return (
_base.state.tokens[_base.state.tokens.length - 1].contextualKeyword === _keywords.ContextualKeyword._async &&
!_util.canInsertSemicolon.call(void 0, )
);
} exports.atPossibleAsync = atPossibleAsync;
function parseCallExpressionArguments() {
let first = true;
while (!_index3.eat.call(void 0, _types3.TokenType.parenR) && !_base.state.error) {
if (first) {
first = false;
} else {
_util.expect.call(void 0, _types3.TokenType.comma);
if (_index3.eat.call(void 0, _types3.TokenType.parenR)) {
break;
}
}
parseExprListItem(false);
}
} exports.parseCallExpressionArguments = parseCallExpressionArguments;
function shouldParseAsyncArrow() {
return _index3.match.call(void 0, _types3.TokenType.colon) || _index3.match.call(void 0, _types3.TokenType.arrow);
}
function parseAsyncArrowFromCallExpression(startTokenIndex) {
if (_base.isTypeScriptEnabled) {
_typescript.tsStartParseAsyncArrowFromCallExpression.call(void 0, );
} else if (_base.isFlowEnabled) {
_flow.flowStartParseAsyncArrowFromCallExpression.call(void 0, );
}
_util.expect.call(void 0, _types3.TokenType.arrow);
parseArrowExpression(startTokenIndex);
}
// Parse a no-call expression (like argument of `new` or `::` operators).
function parseNoCallExpr() {
const startTokenIndex = _base.state.tokens.length;
parseExprAtom();
parseSubscripts(startTokenIndex, true);
}
// Parse an atomic expression — either a single token that is an
// expression, an expression started by a keyword like `function` or
// `new`, or an expression wrapped in punctuation like `()`, `[]`,
// or `{}`.
// Returns true if the parsed expression was an arrow function.
function parseExprAtom() {
if (_index3.eat.call(void 0, _types3.TokenType.modulo)) {
// V8 intrinsic expression. Just parse the identifier, and the function invocation is parsed
// naturally.
parseIdentifier();
return false;
}
if (_index3.match.call(void 0, _types3.TokenType.jsxText) || _index3.match.call(void 0, _types3.TokenType.jsxEmptyText)) {
parseLiteral();
return false;
} else if (_index3.match.call(void 0, _types3.TokenType.lessThan) && _base.isJSXEnabled) {
_base.state.type = _types3.TokenType.jsxTagStart;
_index.jsxParseElement.call(void 0, );
_index3.next.call(void 0, );
return false;
}
const canBeArrow = _base.state.potentialArrowAt === _base.state.start;
switch (_base.state.type) {
case _types3.TokenType.slash:
case _types3.TokenType.assign:
_index3.retokenizeSlashAsRegex.call(void 0, );
// Fall through.
case _types3.TokenType._super:
case _types3.TokenType._this:
case _types3.TokenType.regexp:
case _types3.TokenType.num:
case _types3.TokenType.bigint:
case _types3.TokenType.decimal:
case _types3.TokenType.string:
case _types3.TokenType._null:
case _types3.TokenType._true:
case _types3.TokenType._false:
_index3.next.call(void 0, );
return false;
case _types3.TokenType._import:
_index3.next.call(void 0, );
if (_index3.match.call(void 0, _types3.TokenType.dot)) {
// import.meta
_base.state.tokens[_base.state.tokens.length - 1].type = _types3.TokenType.name;
_index3.next.call(void 0, );
parseIdentifier();
}
return false;
case _types3.TokenType.name: {
const startTokenIndex = _base.state.tokens.length;
const functionStart = _base.state.start;
const contextualKeyword = _base.state.contextualKeyword;
parseIdentifier();
if (contextualKeyword === _keywords.ContextualKeyword._await) {
parseAwait();
return false;
} else if (
contextualKeyword === _keywords.ContextualKeyword._async &&
_index3.match.call(void 0, _types3.TokenType._function) &&
!_util.canInsertSemicolon.call(void 0, )
) {
_index3.next.call(void 0, );
_statement.parseFunction.call(void 0, functionStart, false);
return false;
} else if (
canBeArrow &&
contextualKeyword === _keywords.ContextualKeyword._async &&
!_util.canInsertSemicolon.call(void 0, ) &&
_index3.match.call(void 0, _types3.TokenType.name)
) {
_base.state.scopeDepth++;
_lval.parseBindingIdentifier.call(void 0, false);
_util.expect.call(void 0, _types3.TokenType.arrow);
// let foo = async bar => {};
parseArrowExpression(startTokenIndex);
return true;
} else if (_index3.match.call(void 0, _types3.TokenType._do) && !_util.canInsertSemicolon.call(void 0, )) {
_index3.next.call(void 0, );
_statement.parseBlock.call(void 0, );
return false;
}
if (canBeArrow && !_util.canInsertSemicolon.call(void 0, ) && _index3.match.call(void 0, _types3.TokenType.arrow)) {
_base.state.scopeDepth++;
_lval.markPriorBindingIdentifier.call(void 0, false);
_util.expect.call(void 0, _types3.TokenType.arrow);
parseArrowExpression(startTokenIndex);
return true;
}
_base.state.tokens[_base.state.tokens.length - 1].identifierRole = _index3.IdentifierRole.Access;
return false;
}
case _types3.TokenType._do: {
_index3.next.call(void 0, );
_statement.parseBlock.call(void 0, );
return false;
}
case _types3.TokenType.parenL: {
const wasArrow = parseParenAndDistinguishExpression(canBeArrow);
return wasArrow;
}
case _types3.TokenType.bracketL:
_index3.next.call(void 0, );
parseExprList(_types3.TokenType.bracketR, true);
return false;
case _types3.TokenType.braceL:
parseObj(false, false);
return false;
case _types3.TokenType._function:
parseFunctionExpression();
return false;
case _types3.TokenType.at:
_statement.parseDecorators.call(void 0, );
// Fall through.
case _types3.TokenType._class:
_statement.parseClass.call(void 0, false);
return false;
case _types3.TokenType._new:
parseNew();
return false;
case _types3.TokenType.backQuote:
parseTemplate();
return false;
case _types3.TokenType.doubleColon: {
_index3.next.call(void 0, );
parseNoCallExpr();
return false;
}
case _types3.TokenType.hash: {
const code = _index3.lookaheadCharCode.call(void 0, );
if (_identifier.IS_IDENTIFIER_START[code] || code === _charcodes.charCodes.backslash) {
parseMaybePrivateName();
} else {
_index3.next.call(void 0, );
}
// Smart pipeline topic reference.
return false;
}
default:
_util.unexpected.call(void 0, );
return false;
}
} exports.parseExprAtom = parseExprAtom;
function parseMaybePrivateName() {
_index3.eat.call(void 0, _types3.TokenType.hash);
parseIdentifier();
}
function parseFunctionExpression() {
const functionStart = _base.state.start;
parseIdentifier();
if (_index3.eat.call(void 0, _types3.TokenType.dot)) {
// function.sent
parseIdentifier();
}
_statement.parseFunction.call(void 0, functionStart, false);
}
function parseLiteral() {
_index3.next.call(void 0, );
} exports.parseLiteral = parseLiteral;
function parseParenExpression() {
_util.expect.call(void 0, _types3.TokenType.parenL);
parseExpression();
_util.expect.call(void 0, _types3.TokenType.parenR);
} exports.parseParenExpression = parseParenExpression;
// Returns true if this was an arrow expression.
function parseParenAndDistinguishExpression(canBeArrow) {
// Assume this is a normal parenthesized expression, but if we see an arrow, we'll bail and
// start over as a parameter list.
const snapshot = _base.state.snapshot();
const startTokenIndex = _base.state.tokens.length;
_util.expect.call(void 0, _types3.TokenType.parenL);
let first = true;
while (!_index3.match.call(void 0, _types3.TokenType.parenR) && !_base.state.error) {
if (first) {
first = false;
} else {
_util.expect.call(void 0, _types3.TokenType.comma);
if (_index3.match.call(void 0, _types3.TokenType.parenR)) {
break;
}
}
if (_index3.match.call(void 0, _types3.TokenType.ellipsis)) {
_lval.parseRest.call(void 0, false /* isBlockScope */);
parseParenItem();
break;
} else {
parseMaybeAssign(false, true);
}
}
_util.expect.call(void 0, _types3.TokenType.parenR);
if (canBeArrow && shouldParseArrow()) {
const wasArrow = parseArrow();
if (wasArrow) {
// It was an arrow function this whole time, so start over and parse it as params so that we
// get proper token annotations.
_base.state.restoreFromSnapshot(snapshot);
_base.state.scopeDepth++;
// Don't specify a context ID because arrow functions don't need a context ID.
_statement.parseFunctionParams.call(void 0, );
parseArrow();
parseArrowExpression(startTokenIndex);
if (_base.state.error) {
// Nevermind! This must have been something that looks very much like an
// arrow function but where its "parameter list" isn't actually a valid
// parameter list. Force non-arrow parsing.
// See https://github.com/alangpierce/sucrase/issues/666 for an example.
_base.state.restoreFromSnapshot(snapshot);
parseParenAndDistinguishExpression(false);
return false;
}
return true;
}
}
return false;
}
function shouldParseArrow() {
return _index3.match.call(void 0, _types3.TokenType.colon) || !_util.canInsertSemicolon.call(void 0, );
}
// Returns whether there was an arrow token.
function parseArrow() {
if (_base.isTypeScriptEnabled) {
return _typescript.tsParseArrow.call(void 0, );
} else if (_base.isFlowEnabled) {
return _flow.flowParseArrow.call(void 0, );
} else {
return _index3.eat.call(void 0, _types3.TokenType.arrow);
}
} exports.parseArrow = parseArrow;
function parseParenItem() {
if (_base.isTypeScriptEnabled || _base.isFlowEnabled) {
_types.typedParseParenItem.call(void 0, );
}
}
// New's precedence is slightly tricky. It must allow its argument to
// be a `[]` or dot subscript expression, but not a call — at least,
// not without wrapping it in parentheses. Thus, it uses the noCalls
// argument to parseSubscripts to prevent it from consuming the
// argument list.
function parseNew() {
_util.expect.call(void 0, _types3.TokenType._new);
if (_index3.eat.call(void 0, _types3.TokenType.dot)) {
// new.target
parseIdentifier();
return;
}
parseNewCallee();
if (_base.isFlowEnabled) {
_flow.flowStartParseNewArguments.call(void 0, );
}
if (_index3.eat.call(void 0, _types3.TokenType.parenL)) {
parseExprList(_types3.TokenType.parenR);
}
}
function parseNewCallee() {
parseNoCallExpr();
_index3.eat.call(void 0, _types3.TokenType.questionDot);
}
function parseTemplate() {
// Finish `, read quasi
_index3.nextTemplateToken.call(void 0, );
// Finish quasi, read ${
_index3.nextTemplateToken.call(void 0, );
while (!_index3.match.call(void 0, _types3.TokenType.backQuote) && !_base.state.error) {
_util.expect.call(void 0, _types3.TokenType.dollarBraceL);
parseExpression();
// Finish }, read quasi
_index3.nextTemplateToken.call(void 0, );
// Finish quasi, read either ${ or `
_index3.nextTemplateToken.call(void 0, );
}
_index3.next.call(void 0, );
} exports.parseTemplate = parseTemplate;
// Parse an object literal or binding pattern.
function parseObj(isPattern, isBlockScope) {
// Attach a context ID to the object open and close brace and each object key.
const contextId = _base.getNextContextId.call(void 0, );
let first = true;
_index3.next.call(void 0, );
_base.state.tokens[_base.state.tokens.length - 1].contextId = contextId;
while (!_index3.eat.call(void 0, _types3.TokenType.braceR) && !_base.state.error) {
if (first) {
first = false;
} else {
_util.expect.call(void 0, _types3.TokenType.comma);
if (_index3.eat.call(void 0, _types3.TokenType.braceR)) {
break;
}
}
let isGenerator = false;
if (_index3.match.call(void 0, _types3.TokenType.ellipsis)) {
const previousIndex = _base.state.tokens.length;
_lval.parseSpread.call(void 0, );
if (isPattern) {
// Mark role when the only thing being spread over is an identifier.
if (_base.state.tokens.length === previousIndex + 2) {
_lval.markPriorBindingIdentifier.call(void 0, isBlockScope);
}
if (_index3.eat.call(void 0, _types3.TokenType.braceR)) {
break;
}
}
continue;
}
if (!isPattern) {
isGenerator = _index3.eat.call(void 0, _types3.TokenType.star);
}
if (!isPattern && _util.isContextual.call(void 0, _keywords.ContextualKeyword._async)) {
if (isGenerator) _util.unexpected.call(void 0, );
parseIdentifier();
if (
_index3.match.call(void 0, _types3.TokenType.colon) ||
_index3.match.call(void 0, _types3.TokenType.parenL) ||
_index3.match.call(void 0, _types3.TokenType.braceR) ||
_index3.match.call(void 0, _types3.TokenType.eq) ||
_index3.match.call(void 0, _types3.TokenType.comma)
) {
// This is a key called "async" rather than an async function.
} else {
if (_index3.match.call(void 0, _types3.TokenType.star)) {
_index3.next.call(void 0, );
isGenerator = true;
}
parsePropertyName(contextId);
}
} else {
parsePropertyName(contextId);
}
parseObjPropValue(isPattern, isBlockScope, contextId);
}
_base.state.tokens[_base.state.tokens.length - 1].contextId = contextId;
} exports.parseObj = parseObj;
function isGetterOrSetterMethod(isPattern) {
// We go off of the next and don't bother checking if the node key is actually "get" or "set".
// This lets us avoid generating a node, and should only make the validation worse.
return (
!isPattern &&
(_index3.match.call(void 0, _types3.TokenType.string) || // get "string"() {}
_index3.match.call(void 0, _types3.TokenType.num) || // get 1() {}
_index3.match.call(void 0, _types3.TokenType.bracketL) || // get ["string"]() {}
_index3.match.call(void 0, _types3.TokenType.name) || // get foo() {}
!!(_base.state.type & _types3.TokenType.IS_KEYWORD)) // get debugger() {}
);
}
// Returns true if this was a method.
function parseObjectMethod(isPattern, objectContextId) {
// We don't need to worry about modifiers because object methods can't have optional bodies, so
// the start will never be used.
const functionStart = _base.state.start;
if (_index3.match.call(void 0, _types3.TokenType.parenL)) {
if (isPattern) _util.unexpected.call(void 0, );
parseMethod(functionStart, /* isConstructor */ false);
return true;
}
if (isGetterOrSetterMethod(isPattern)) {
parsePropertyName(objectContextId);
parseMethod(functionStart, /* isConstructor */ false);
return true;
}
return false;
}
function parseObjectProperty(isPattern, isBlockScope) {
if (_index3.eat.call(void 0, _types3.TokenType.colon)) {
if (isPattern) {
_lval.parseMaybeDefault.call(void 0, isBlockScope);
} else {
parseMaybeAssign(false);
}
return;
}
// Since there's no colon, we assume this is an object shorthand.
// If we're in a destructuring, we've now discovered that the key was actually an assignee, so
// we need to tag it as a declaration with the appropriate scope. Otherwise, we might need to
// transform it on access, so mark it as a normal object shorthand.
let identifierRole;
if (isPattern) {
if (_base.state.scopeDepth === 0) {
identifierRole = _index3.IdentifierRole.ObjectShorthandTopLevelDeclaration;
} else if (isBlockScope) {
identifierRole = _index3.IdentifierRole.ObjectShorthandBlockScopedDeclaration;
} else {
identifierRole = _index3.IdentifierRole.ObjectShorthandFunctionScopedDeclaration;
}
} else {
identifierRole = _index3.IdentifierRole.ObjectShorthand;
}
_base.state.tokens[_base.state.tokens.length - 1].identifierRole = identifierRole;
// Regardless of whether we know this to be a pattern or if we're in an ambiguous context, allow
// parsing as if there's a default value.
_lval.parseMaybeDefault.call(void 0, isBlockScope, true);
}
function parseObjPropValue(
isPattern,
isBlockScope,
objectContextId,
) {
if (_base.isTypeScriptEnabled) {
_typescript.tsStartParseObjPropValue.call(void 0, );
} else if (_base.isFlowEnabled) {
_flow.flowStartParseObjPropValue.call(void 0, );
}
const wasMethod = parseObjectMethod(isPattern, objectContextId);
if (!wasMethod) {
parseObjectProperty(isPattern, isBlockScope);
}
}
function parsePropertyName(objectContextId) {
if (_base.isFlowEnabled) {
_flow.flowParseVariance.call(void 0, );
}
if (_index3.eat.call(void 0, _types3.TokenType.bracketL)) {
_base.state.tokens[_base.state.tokens.length - 1].contextId = objectContextId;
parseMaybeAssign();
_util.expect.call(void 0, _types3.TokenType.bracketR);
_base.state.tokens[_base.state.tokens.length - 1].contextId = objectContextId;
} else {
if (_index3.match.call(void 0, _types3.TokenType.num) || _index3.match.call(void 0, _types3.TokenType.string) || _index3.match.call(void 0, _types3.TokenType.bigint) || _index3.match.call(void 0, _types3.TokenType.decimal)) {
parseExprAtom();
} else {
parseMaybePrivateName();
}
_base.state.tokens[_base.state.tokens.length - 1].identifierRole = _index3.IdentifierRole.ObjectKey;
_base.state.tokens[_base.state.tokens.length - 1].contextId = objectContextId;
}
} exports.parsePropertyName = parsePropertyName;
// Parse object or class method.
function parseMethod(functionStart, isConstructor) {
const funcContextId = _base.getNextContextId.call(void 0, );
_base.state.scopeDepth++;
const startTokenIndex = _base.state.tokens.length;
const allowModifiers = isConstructor; // For TypeScript parameter properties
_statement.parseFunctionParams.call(void 0, allowModifiers, funcContextId);
parseFunctionBodyAndFinish(functionStart, funcContextId);
const endTokenIndex = _base.state.tokens.length;
_base.state.scopes.push(new (0, _state.Scope)(startTokenIndex, endTokenIndex, true));
_base.state.scopeDepth--;
} exports.parseMethod = parseMethod;
// Parse arrow function expression.
// If the parameters are provided, they will be converted to an
// assignable list.
function parseArrowExpression(startTokenIndex) {
parseFunctionBody(true);
const endTokenIndex = _base.state.tokens.length;
_base.state.scopes.push(new (0, _state.Scope)(startTokenIndex, endTokenIndex, true));
_base.state.scopeDepth--;
} exports.parseArrowExpression = parseArrowExpression;
function parseFunctionBodyAndFinish(functionStart, funcContextId = 0) {
if (_base.isTypeScriptEnabled) {
_typescript.tsParseFunctionBodyAndFinish.call(void 0, functionStart, funcContextId);
} else if (_base.isFlowEnabled) {
_flow.flowParseFunctionBodyAndFinish.call(void 0, funcContextId);
} else {
parseFunctionBody(false, funcContextId);
}
} exports.parseFunctionBodyAndFinish = parseFunctionBodyAndFinish;
function parseFunctionBody(allowExpression, funcContextId = 0) {
const isExpression = allowExpression && !_index3.match.call(void 0, _types3.TokenType.braceL);
if (isExpression) {
parseMaybeAssign();
} else {
_statement.parseBlock.call(void 0, true /* isFunctionScope */, funcContextId);
}
} exports.parseFunctionBody = parseFunctionBody;
// Parses a comma-separated list of expressions, and returns them as
// an array. `close` is the token type that ends the list, and
// `allowEmpty` can be turned on to allow subsequent commas with
// nothing in between them to be parsed as `null` (which is needed
// for array literals).
function parseExprList(close, allowEmpty = false) {
let first = true;
while (!_index3.eat.call(void 0, close) && !_base.state.error) {
if (first) {
first = false;
} else {
_util.expect.call(void 0, _types3.TokenType.comma);
if (_index3.eat.call(void 0, close)) break;
}
parseExprListItem(allowEmpty);
}
}
function parseExprListItem(allowEmpty) {
if (allowEmpty && _index3.match.call(void 0, _types3.TokenType.comma)) {
// Empty item; nothing more to parse for this item.
} else if (_index3.match.call(void 0, _types3.TokenType.ellipsis)) {
_lval.parseSpread.call(void 0, );
parseParenItem();
} else if (_index3.match.call(void 0, _types3.TokenType.question)) {
// Partial function application proposal.
_index3.next.call(void 0, );
} else {
parseMaybeAssign(false, true);
}
}
// Parse the next token as an identifier.
function parseIdentifier() {
_index3.next.call(void 0, );
_base.state.tokens[_base.state.tokens.length - 1].type = _types3.TokenType.name;
} exports.parseIdentifier = parseIdentifier;
// Parses await expression inside async function.
function parseAwait() {
parseMaybeUnary();
}
// Parses yield expression inside generator.
function parseYield() {
_index3.next.call(void 0, );
if (!_index3.match.call(void 0, _types3.TokenType.semi) && !_util.canInsertSemicolon.call(void 0, )) {
_index3.eat.call(void 0, _types3.TokenType.star);
parseMaybeAssign();
}
}
// https://github.com/tc39/proposal-js-module-blocks
function parseModuleExpression() {
_util.expectContextual.call(void 0, _keywords.ContextualKeyword._module);
_util.expect.call(void 0, _types3.TokenType.braceL);
// For now, just call parseBlockBody to parse the block. In the future when we
// implement full support, we'll want to emit scopes and possibly other
// information.
_statement.parseBlockBody.call(void 0, _types3.TokenType.braceR);
}