geos/opt/lib/gcc/i686-elf/13.2.0/plugin/include/graphite.h
2024-03-26 15:15:06 +01:00

453 lines
12 KiB
C

/* Graphite polyhedral representation.
Copyright (C) 2009-2023 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Tobias Grosser <grosser@fim.uni-passau.de>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_GRAPHITE_POLY_H
#define GCC_GRAPHITE_POLY_H
#include "sese.h"
typedef struct poly_dr *poly_dr_p;
typedef struct poly_bb *poly_bb_p;
typedef struct scop *scop_p;
typedef unsigned graphite_dim_t;
inline graphite_dim_t scop_nb_params (scop_p);
/* A data reference can write or read some memory or we
just know it may write some memory. */
enum poly_dr_type
{
PDR_READ,
/* PDR_MAY_READs are represented using PDR_READS. This does not
limit the expressiveness. */
PDR_WRITE,
PDR_MAY_WRITE
};
struct poly_dr
{
/* An identifier for this PDR. */
int id;
/* The number of data refs identical to this one in the PBB. */
int nb_refs;
/* A pointer to the gimple stmt containing this reference. */
gimple *stmt;
/* A pointer to the PBB that contains this data reference. */
poly_bb_p pbb;
enum poly_dr_type type;
/* The access polyhedron contains the polyhedral space this data
reference will access.
The polyhedron contains these dimensions:
- The alias set (a):
Every memory access is classified in at least one alias set.
- The subscripts (s_0, ..., s_n):
The memory is accessed using zero or more subscript dimensions.
- The iteration domain (variables and parameters)
Do not hardcode the dimensions. Use the following accessor functions:
- pdr_alias_set_dim
- pdr_subscript_dim
- pdr_iterator_dim
- pdr_parameter_dim
Example:
| int A[1335][123];
| int *p = malloc ();
|
| k = ...
| for i
| {
| if (unknown_function ())
| p = A;
| ... = p[?][?];
| for j
| A[i][j+k] = m;
| }
The data access A[i][j+k] in alias set "5" is described like this:
| i j k a s0 s1 1
| 0 0 0 1 0 0 -5 = 0
|-1 0 0 0 1 0 0 = 0
| 0 -1 -1 0 0 1 0 = 0
| 0 0 0 0 1 0 0 >= 0 # The last four lines describe the
| 0 0 0 0 0 1 0 >= 0 # array size.
| 0 0 0 0 -1 0 1335 >= 0
| 0 0 0 0 0 -1 123 >= 0
The pointer "*p" in alias set "5" and "7" is described as a union of
polyhedron:
| i k a s0 1
| 0 0 1 0 -5 = 0
| 0 0 0 1 0 >= 0
"or"
| i k a s0 1
| 0 0 1 0 -7 = 0
| 0 0 0 1 0 >= 0
"*p" accesses all of the object allocated with 'malloc'.
The scalar data access "m" is represented as an array with zero subscript
dimensions.
| i j k a 1
| 0 0 0 -1 15 = 0
The difference between the graphite internal format for access data and
the OpenSop format is in the order of columns.
Instead of having:
| i j k a s0 s1 1
| 0 0 0 1 0 0 -5 = 0
|-1 0 0 0 1 0 0 = 0
| 0 -1 -1 0 0 1 0 = 0
| 0 0 0 0 1 0 0 >= 0 # The last four lines describe the
| 0 0 0 0 0 1 0 >= 0 # array size.
| 0 0 0 0 -1 0 1335 >= 0
| 0 0 0 0 0 -1 123 >= 0
In OpenScop we have:
| a s0 s1 i j k 1
| 1 0 0 0 0 0 -5 = 0
| 0 1 0 -1 0 0 0 = 0
| 0 0 1 0 -1 -1 0 = 0
| 0 1 0 0 0 0 0 >= 0 # The last four lines describe the
| 0 0 1 0 0 0 0 >= 0 # array size.
| 0 -1 0 0 0 0 1335 >= 0
| 0 0 -1 0 0 0 123 >= 0
The OpenScop access function is printed as follows:
| 1 # The number of disjunct components in a union of access functions.
| R C O I L P # Described bellow.
| a s0 s1 i j k 1
| 1 0 0 0 0 0 -5 = 0
| 0 1 0 -1 0 0 0 = 0
| 0 0 1 0 -1 -1 0 = 0
| 0 1 0 0 0 0 0 >= 0 # The last four lines describe the
| 0 0 1 0 0 0 0 >= 0 # array size.
| 0 -1 0 0 0 0 1335 >= 0
| 0 0 -1 0 0 0 123 >= 0
Where:
- R: Number of rows.
- C: Number of columns.
- O: Number of output dimensions = alias set + number of subscripts.
- I: Number of input dimensions (iterators).
- L: Number of local (existentially quantified) dimensions.
- P: Number of parameters.
In the example, the vector "R C O I L P" is "7 7 3 2 0 1". */
isl_map *accesses;
isl_set *subscript_sizes;
};
#define PDR_ID(PDR) (PDR->id)
#define PDR_NB_REFS(PDR) (PDR->nb_refs)
#define PDR_PBB(PDR) (PDR->pbb)
#define PDR_TYPE(PDR) (PDR->type)
#define PDR_ACCESSES(PDR) (NULL)
void new_poly_dr (poly_bb_p, gimple *, enum poly_dr_type,
isl_map *, isl_set *);
void debug_pdr (poly_dr_p);
void print_pdr (FILE *, poly_dr_p);
inline bool
pdr_read_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_READ;
}
/* Returns true when PDR is a "write". */
inline bool
pdr_write_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_WRITE;
}
/* Returns true when PDR is a "may write". */
inline bool
pdr_may_write_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_MAY_WRITE;
}
/* POLY_BB represents a blackbox in the polyhedral model. */
struct poly_bb
{
/* Pointer to a basic block or a statement in the compiler. */
gimple_poly_bb_p black_box;
/* Pointer to the SCOP containing this PBB. */
scop_p scop;
/* The iteration domain of this bb. The layout of this polyhedron
is I|G with I the iteration domain, G the context parameters.
Example:
for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
for (j = 2; j <= 2*i + 5; j++)
for (k = 0; k <= 5; k++)
S (i,j,k)
Loop iterators: i, j, k
Parameters: a, b
| i >= a - 7b + 8
| i <= 3a + 13b + 20
| j >= 2
| j <= 2i + 5
| k >= 0
| k <= 5
The number of variables in the DOMAIN may change and is not
related to the number of loops in the original code. */
isl_set *domain;
isl_set *iterators;
/* The data references we access. */
vec<poly_dr_p> drs;
/* The last basic block generated for this pbb. */
basic_block new_bb;
};
#define PBB_BLACK_BOX(PBB) ((gimple_poly_bb_p) PBB->black_box)
#define PBB_SCOP(PBB) (PBB->scop)
#define PBB_DRS(PBB) (PBB->drs)
extern poly_bb_p new_poly_bb (scop_p, gimple_poly_bb_p);
extern void print_pbb_domain (FILE *, poly_bb_p);
extern void print_pbb (FILE *, poly_bb_p);
extern void print_scop_context (FILE *, scop_p);
extern void print_scop (FILE *, scop_p);
extern void debug_pbb_domain (poly_bb_p);
extern void debug_pbb (poly_bb_p);
extern void print_pdrs (FILE *, poly_bb_p);
extern void debug_pdrs (poly_bb_p);
extern void debug_scop_context (scop_p);
extern void debug_scop (scop_p);
extern void print_scop_params (FILE *, scop_p);
extern void debug_scop_params (scop_p);
extern void print_iteration_domain (FILE *, poly_bb_p);
extern void print_iteration_domains (FILE *, scop_p);
extern void debug_iteration_domain (poly_bb_p);
extern void debug_iteration_domains (scop_p);
extern void print_isl_set (FILE *, isl_set *);
extern void print_isl_map (FILE *, isl_map *);
extern void print_isl_union_map (FILE *, isl_union_map *);
extern void print_isl_aff (FILE *, isl_aff *);
extern void print_isl_constraint (FILE *, isl_constraint *);
extern void print_isl_schedule (FILE *, isl_schedule *);
extern void debug_isl_schedule (isl_schedule *);
extern void print_isl_ast (FILE *, isl_ast_node *);
extern void debug_isl_ast (isl_ast_node *);
extern void debug_isl_set (isl_set *);
extern void debug_isl_map (isl_map *);
extern void debug_isl_union_map (isl_union_map *);
extern void debug_isl_aff (isl_aff *);
extern void debug_isl_constraint (isl_constraint *);
extern void debug_gmp_value (mpz_t);
extern void debug_scop_pbb (scop_p scop, int i);
extern void print_schedule_ast (FILE *, __isl_keep isl_schedule *, scop_p);
extern void debug_schedule_ast (__isl_keep isl_schedule *, scop_p);
/* The basic block of the PBB. */
inline basic_block
pbb_bb (poly_bb_p pbb)
{
return GBB_BB (PBB_BLACK_BOX (pbb));
}
inline int
pbb_index (poly_bb_p pbb)
{
return pbb_bb (pbb)->index;
}
/* The loop of the PBB. */
inline loop_p
pbb_loop (poly_bb_p pbb)
{
return gbb_loop (PBB_BLACK_BOX (pbb));
}
/* The scop that contains the PDR. */
inline scop_p
pdr_scop (poly_dr_p pdr)
{
return PBB_SCOP (PDR_PBB (pdr));
}
/* Set black box of PBB to BLACKBOX. */
inline void
pbb_set_black_box (poly_bb_p pbb, gimple_poly_bb_p black_box)
{
pbb->black_box = black_box;
}
/* A helper structure to keep track of data references, polyhedral BBs, and
alias sets. */
struct dr_info
{
enum {
invalid_alias_set = -1
};
/* The data reference. */
data_reference_p dr;
/* The polyhedral BB containing this DR. */
poly_bb_p pbb;
/* ALIAS_SET is the SCC number assigned by a graph_dfs of the alias graph.
-1 is an invalid alias set. */
int alias_set;
/* Construct a DR_INFO from a data reference DR, an ALIAS_SET, and a PBB. */
dr_info (data_reference_p dr, poly_bb_p pbb,
int alias_set = invalid_alias_set)
: dr (dr), pbb (pbb), alias_set (alias_set) {}
};
/* A SCOP is a Static Control Part of the program, simple enough to be
represented in polyhedral form. */
struct scop
{
/* A SCOP is defined as a SESE region. */
sese_info_p scop_info;
/* Number of parameters in SCoP. */
graphite_dim_t nb_params;
/* The maximum alias set as assigned to drs by build_alias_sets. */
unsigned max_alias_set;
/* All the basic blocks in this scop that contain memory references
and that will be represented as statements in the polyhedral
representation. */
vec<poly_bb_p> pbbs;
/* All the data references in this scop. */
vec<dr_info> drs;
/* The context describes known restrictions concerning the parameters
and relations in between the parameters.
void f (int8_t a, uint_16_t b) {
c = 2 a + b;
...
}
Here we can add these restrictions to the context:
-128 >= a >= 127
0 >= b >= 65,535
c = 2a + b */
isl_set *param_context;
/* The context used internally by isl. */
isl_ctx *isl_context;
/* SCoP original schedule. */
isl_schedule *original_schedule;
/* SCoP transformed schedule. */
isl_schedule *transformed_schedule;
/* The data dependence relation among the data references in this scop. */
isl_union_map *dependence;
};
extern scop_p new_scop (edge, edge);
extern void free_scop (scop_p);
extern gimple_poly_bb_p new_gimple_poly_bb (basic_block, vec<data_reference_p>,
vec<scalar_use>, vec<tree>);
extern bool apply_poly_transforms (scop_p);
/* Set the region of SCOP to REGION. */
inline void
scop_set_region (scop_p scop, sese_info_p region)
{
scop->scop_info = region;
}
/* Returns the number of parameters for SCOP. */
inline graphite_dim_t
scop_nb_params (scop_p scop)
{
return scop->nb_params;
}
/* Set the number of params of SCOP to NB_PARAMS. */
inline void
scop_set_nb_params (scop_p scop, graphite_dim_t nb_params)
{
scop->nb_params = nb_params;
}
extern void scop_get_dependences (scop_p scop);
bool
carries_deps (__isl_keep isl_union_map *schedule,
__isl_keep isl_union_map *deps,
int depth);
extern bool build_poly_scop (scop_p);
extern bool graphite_regenerate_ast_isl (scop_p);
extern void build_scops (vec<scop_p> *);
extern tree cached_scalar_evolution_in_region (const sese_l &, loop_p, tree);
extern void dot_all_sese (FILE *, vec<sese_l> &);
extern void dot_sese (sese_l &);
extern void dot_cfg ();
#endif