geos/opt/lib/gcc/i686-elf/13.2.0/plugin/include/shortest-paths.h
2024-03-26 15:15:06 +01:00

216 lines
6.1 KiB
C++

/* Template class for Dijkstra's algorithm on directed graphs.
Copyright (C) 2019-2023 Free Software Foundation, Inc.
Contributed by David Malcolm <dmalcolm@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_SHORTEST_PATHS_H
#define GCC_SHORTEST_PATHS_H
#include "timevar.h"
enum shortest_path_sense
{
/* Find the shortest path from the given origin node to each
node in the graph. */
SPS_FROM_GIVEN_ORIGIN,
/* Find the shortest path from each node in the graph to the
given target node. */
SPS_TO_GIVEN_TARGET
};
/* A record of the shortest path for each node relative to a special
"given node", either:
SPS_FROM_GIVEN_ORIGIN:
from the given origin node to each node in a graph, or
SPS_TO_GIVEN_TARGET:
from each node in a graph to the given target node.
The constructor runs Dijkstra's algorithm, and the results are
stored in this class. */
template <typename GraphTraits, typename Path_t>
class shortest_paths
{
public:
typedef typename GraphTraits::graph_t graph_t;
typedef typename GraphTraits::node_t node_t;
typedef typename GraphTraits::edge_t edge_t;
typedef Path_t path_t;
shortest_paths (const graph_t &graph, const node_t *given_node,
enum shortest_path_sense sense);
path_t get_shortest_path (const node_t *other_node) const;
int get_shortest_distance (const node_t *other_node) const;
private:
const graph_t &m_graph;
enum shortest_path_sense m_sense;
/* For each node (by index), the minimal distance between that node
and the given node (with direction depending on m_sense). */
auto_vec<int> m_dist;
/* For each node (by index):
SPS_FROM_GIVEN_ORIGIN:
the previous edge in the shortest path from the origin,
SPS_TO_GIVEN_TARGET:
the next edge in the shortest path to the target. */
auto_vec<const edge_t *> m_best_edge;
};
/* shortest_paths's constructor.
Use Dijkstra's algorithm relative to GIVEN_NODE to populate m_dist and
m_best_edge with enough information to be able to generate Path_t instances
to give the shortest path...
SPS_FROM_GIVEN_ORIGIN: to each node in a graph from the origin node, or
SPS_TO_GIVEN_TARGET: from each node in a graph to the target node. */
template <typename GraphTraits, typename Path_t>
inline
shortest_paths<GraphTraits, Path_t>::
shortest_paths (const graph_t &graph,
const node_t *given_node,
enum shortest_path_sense sense)
: m_graph (graph),
m_sense (sense),
m_dist (graph.m_nodes.length ()),
m_best_edge (graph.m_nodes.length ())
{
auto_timevar tv (TV_ANALYZER_SHORTEST_PATHS);
auto_vec<int> queue (graph.m_nodes.length ());
for (unsigned i = 0; i < graph.m_nodes.length (); i++)
{
m_dist.quick_push (INT_MAX);
m_best_edge.quick_push (NULL);
queue.quick_push (i);
}
m_dist[given_node->m_index] = 0;
while (queue.length () > 0)
{
/* Get minimal distance in queue.
FIXME: this is O(N^2); replace with a priority queue. */
int idx_with_min_dist = -1;
int idx_in_queue_with_min_dist = -1;
int min_dist = INT_MAX;
for (unsigned i = 0; i < queue.length (); i++)
{
int idx = queue[i];
if (m_dist[queue[i]] < min_dist)
{
min_dist = m_dist[idx];
idx_with_min_dist = idx;
idx_in_queue_with_min_dist = i;
}
}
if (idx_with_min_dist == -1)
break;
gcc_assert (idx_in_queue_with_min_dist != -1);
// FIXME: this is confusing: there are two indices here
queue.unordered_remove (idx_in_queue_with_min_dist);
node_t *n
= static_cast <node_t *> (m_graph.m_nodes[idx_with_min_dist]);
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
{
int i;
edge_t *succ;
FOR_EACH_VEC_ELT (n->m_succs, i, succ)
{
// TODO: only for dest still in queue
node_t *dest = succ->m_dest;
int alt = m_dist[n->m_index] + 1;
if (alt < m_dist[dest->m_index])
{
m_dist[dest->m_index] = alt;
m_best_edge[dest->m_index] = succ;
}
}
}
else
{
int i;
edge_t *pred;
FOR_EACH_VEC_ELT (n->m_preds, i, pred)
{
// TODO: only for dest still in queue
node_t *src = pred->m_src;
int alt = m_dist[n->m_index] + 1;
if (alt < m_dist[src->m_index])
{
m_dist[src->m_index] = alt;
m_best_edge[src->m_index] = pred;
}
}
}
}
}
/* Generate an Path_t instance giving the shortest path between OTHER_NODE
and the given node.
SPS_FROM_GIVEN_ORIGIN: shortest path from given origin node to OTHER_NODE
SPS_TO_GIVEN_TARGET: shortest path from OTHER_NODE to given target node.
If no such path exists, return an empty path. */
template <typename GraphTraits, typename Path_t>
inline Path_t
shortest_paths<GraphTraits, Path_t>::
get_shortest_path (const node_t *other_node) const
{
Path_t result;
while (m_best_edge[other_node->m_index])
{
result.m_edges.safe_push (m_best_edge[other_node->m_index]);
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
other_node = m_best_edge[other_node->m_index]->m_src;
else
other_node = m_best_edge[other_node->m_index]->m_dest;
}
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
result.m_edges.reverse ();
return result;
}
/* Get the shortest distance...
SPS_FROM_GIVEN_ORIGIN: ...from given origin node to OTHER_NODE
SPS_TO_GIVEN_TARGET: ...from OTHER_NODE to given target node. */
template <typename GraphTraits, typename Path_t>
inline int
shortest_paths<GraphTraits, Path_t>::
get_shortest_distance (const node_t *other_node) const
{
return m_dist[other_node->m_index];
}
#endif /* GCC_SHORTEST_PATHS_H */