560 lines
21 KiB
C
560 lines
21 KiB
C
|
/* Definitions of floating-point access for GNU compiler.
|
|||
|
Copyright (C) 1989-2023 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GCC.
|
|||
|
|
|||
|
GCC is free software; you can redistribute it and/or modify it under
|
|||
|
the terms of the GNU General Public License as published by the Free
|
|||
|
Software Foundation; either version 3, or (at your option) any later
|
|||
|
version.
|
|||
|
|
|||
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|||
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|||
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|||
|
for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with GCC; see the file COPYING3. If not see
|
|||
|
<http://www.gnu.org/licenses/>. */
|
|||
|
|
|||
|
#ifndef GCC_REAL_H
|
|||
|
#define GCC_REAL_H
|
|||
|
|
|||
|
/* An expanded form of the represented number. */
|
|||
|
|
|||
|
/* Enumerate the special cases of numbers that we encounter. */
|
|||
|
enum real_value_class {
|
|||
|
rvc_zero,
|
|||
|
rvc_normal,
|
|||
|
rvc_inf,
|
|||
|
rvc_nan
|
|||
|
};
|
|||
|
|
|||
|
#define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG)
|
|||
|
#define EXP_BITS (32 - 6)
|
|||
|
#define MAX_EXP ((1 << (EXP_BITS - 1)) - 1)
|
|||
|
#define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG)
|
|||
|
#define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1))
|
|||
|
|
|||
|
struct GTY(()) real_value {
|
|||
|
/* Use the same underlying type for all bit-fields, so as to make
|
|||
|
sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will
|
|||
|
be miscomputed. */
|
|||
|
unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2;
|
|||
|
/* 1 if number is decimal floating point. */
|
|||
|
unsigned int decimal : 1;
|
|||
|
/* 1 if number is negative. */
|
|||
|
unsigned int sign : 1;
|
|||
|
/* 1 if number is signalling. */
|
|||
|
unsigned int signalling : 1;
|
|||
|
/* 1 if number is canonical
|
|||
|
All are generally used for handling cases in real.cc. */
|
|||
|
unsigned int canonical : 1;
|
|||
|
/* unbiased exponent of the number. */
|
|||
|
unsigned int uexp : EXP_BITS;
|
|||
|
/* significand of the number. */
|
|||
|
unsigned long sig[SIGSZ];
|
|||
|
};
|
|||
|
|
|||
|
#define REAL_EXP(REAL) \
|
|||
|
((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \
|
|||
|
- (1 << (EXP_BITS - 1)))
|
|||
|
#define SET_REAL_EXP(REAL, EXP) \
|
|||
|
((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1)))
|
|||
|
|
|||
|
/* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it
|
|||
|
needs to be a macro. We do need to continue to have a structure tag
|
|||
|
so that other headers can forward declare it. */
|
|||
|
#define REAL_VALUE_TYPE struct real_value
|
|||
|
|
|||
|
/* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in
|
|||
|
consecutive "w" slots. Moreover, we've got to compute the number of "w"
|
|||
|
slots at preprocessor time, which means we can't use sizeof. Guess. */
|
|||
|
|
|||
|
#define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32)
|
|||
|
#define REAL_WIDTH \
|
|||
|
(REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \
|
|||
|
+ (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */
|
|||
|
|
|||
|
/* Verify the guess. */
|
|||
|
extern char test_real_width
|
|||
|
[sizeof (REAL_VALUE_TYPE) <= REAL_WIDTH * sizeof (HOST_WIDE_INT) ? 1 : -1];
|
|||
|
|
|||
|
/* Calculate the format for CONST_DOUBLE. We need as many slots as
|
|||
|
are necessary to overlay a REAL_VALUE_TYPE on them. This could be
|
|||
|
as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE).
|
|||
|
|
|||
|
A number of places assume that there are always at least two 'w'
|
|||
|
slots in a CONST_DOUBLE, so we provide them even if one would suffice. */
|
|||
|
|
|||
|
#if REAL_WIDTH == 1
|
|||
|
# define CONST_DOUBLE_FORMAT "ww"
|
|||
|
#else
|
|||
|
# if REAL_WIDTH == 2
|
|||
|
# define CONST_DOUBLE_FORMAT "ww"
|
|||
|
# else
|
|||
|
# if REAL_WIDTH == 3
|
|||
|
# define CONST_DOUBLE_FORMAT "www"
|
|||
|
# else
|
|||
|
# if REAL_WIDTH == 4
|
|||
|
# define CONST_DOUBLE_FORMAT "wwww"
|
|||
|
# else
|
|||
|
# if REAL_WIDTH == 5
|
|||
|
# define CONST_DOUBLE_FORMAT "wwwww"
|
|||
|
# else
|
|||
|
# if REAL_WIDTH == 6
|
|||
|
# define CONST_DOUBLE_FORMAT "wwwwww"
|
|||
|
# else
|
|||
|
#error "REAL_WIDTH > 6 not supported"
|
|||
|
# endif
|
|||
|
# endif
|
|||
|
# endif
|
|||
|
# endif
|
|||
|
# endif
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
/* Describes the properties of the specific target format in use. */
|
|||
|
struct real_format
|
|||
|
{
|
|||
|
/* Move to and from the target bytes. */
|
|||
|
void (*encode) (const struct real_format *, long *,
|
|||
|
const REAL_VALUE_TYPE *);
|
|||
|
void (*decode) (const struct real_format *, REAL_VALUE_TYPE *,
|
|||
|
const long *);
|
|||
|
|
|||
|
/* The radix of the exponent and digits of the significand. */
|
|||
|
int b;
|
|||
|
|
|||
|
/* Size of the significand in digits of radix B. */
|
|||
|
int p;
|
|||
|
|
|||
|
/* Size of the significant of a NaN, in digits of radix B. */
|
|||
|
int pnan;
|
|||
|
|
|||
|
/* The minimum negative integer, x, such that b**(x-1) is normalized. */
|
|||
|
int emin;
|
|||
|
|
|||
|
/* The maximum integer, x, such that b**(x-1) is representable. */
|
|||
|
int emax;
|
|||
|
|
|||
|
/* The bit position of the sign bit, for determining whether a value
|
|||
|
is positive/negative, or -1 for a complex encoding. */
|
|||
|
int signbit_ro;
|
|||
|
|
|||
|
/* The bit position of the sign bit, for changing the sign of a number,
|
|||
|
or -1 for a complex encoding. */
|
|||
|
int signbit_rw;
|
|||
|
|
|||
|
/* If this is an IEEE interchange format, the number of bits in the
|
|||
|
format; otherwise, if it is an IEEE extended format, one more
|
|||
|
than the greatest number of bits in an interchange format it
|
|||
|
extends; otherwise 0. Formats need not follow the IEEE 754-2008
|
|||
|
recommended practice regarding how signaling NaNs are identified,
|
|||
|
and may vary in the choice of default NaN, but must follow other
|
|||
|
IEEE practice regarding having NaNs, infinities and subnormal
|
|||
|
values, and the relation of minimum and maximum exponents, and,
|
|||
|
for interchange formats, the details of the encoding. */
|
|||
|
int ieee_bits;
|
|||
|
|
|||
|
/* Default rounding mode for operations on this format. */
|
|||
|
bool round_towards_zero;
|
|||
|
bool has_sign_dependent_rounding;
|
|||
|
|
|||
|
/* Properties of the format. */
|
|||
|
bool has_nans;
|
|||
|
bool has_inf;
|
|||
|
bool has_denorm;
|
|||
|
bool has_signed_zero;
|
|||
|
bool qnan_msb_set;
|
|||
|
bool canonical_nan_lsbs_set;
|
|||
|
const char *name;
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
/* The target format used for each floating point mode.
|
|||
|
Float modes are followed by decimal float modes, with entries for
|
|||
|
float modes indexed by (MODE - first float mode), and entries for
|
|||
|
decimal float modes indexed by (MODE - first decimal float mode) +
|
|||
|
the number of float modes. */
|
|||
|
extern const struct real_format *
|
|||
|
real_format_for_mode[NUM_MODE_FLOAT + NUM_MODE_DECIMAL_FLOAT];
|
|||
|
|
|||
|
#define REAL_MODE_FORMAT(MODE) \
|
|||
|
(real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \
|
|||
|
? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \
|
|||
|
+ NUM_MODE_FLOAT) \
|
|||
|
: GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
|||
|
? ((MODE) - MIN_MODE_FLOAT) \
|
|||
|
: (gcc_unreachable (), 0)])
|
|||
|
|
|||
|
#define FLOAT_MODE_FORMAT(MODE) \
|
|||
|
(REAL_MODE_FORMAT (as_a <scalar_float_mode> (GET_MODE_INNER (MODE))))
|
|||
|
|
|||
|
/* The following macro determines whether the floating point format is
|
|||
|
composite, i.e. may contain non-consecutive mantissa bits, in which
|
|||
|
case compile-time FP overflow may not model run-time overflow. */
|
|||
|
#define MODE_COMPOSITE_P(MODE) \
|
|||
|
(FLOAT_MODE_P (MODE) \
|
|||
|
&& FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p)
|
|||
|
|
|||
|
/* Accessor macros for format properties. */
|
|||
|
#define MODE_HAS_NANS(MODE) \
|
|||
|
(FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans)
|
|||
|
#define MODE_HAS_INFINITIES(MODE) \
|
|||
|
(FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf)
|
|||
|
#define MODE_HAS_SIGNED_ZEROS(MODE) \
|
|||
|
(FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero)
|
|||
|
#define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \
|
|||
|
(FLOAT_MODE_P (MODE) \
|
|||
|
&& FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding)
|
|||
|
|
|||
|
/* This class allows functions in this file to accept a floating-point
|
|||
|
format as either a mode or an explicit real_format pointer. In the
|
|||
|
former case the mode must be VOIDmode (which means "no particular
|
|||
|
format") or must satisfy SCALAR_FLOAT_MODE_P. */
|
|||
|
class format_helper
|
|||
|
{
|
|||
|
public:
|
|||
|
format_helper (const real_format *format) : m_format (format) {}
|
|||
|
template<typename T> format_helper (const T &);
|
|||
|
const real_format *operator-> () const { return m_format; }
|
|||
|
operator const real_format *() const { return m_format; }
|
|||
|
|
|||
|
bool decimal_p () const { return m_format && m_format->b == 10; }
|
|||
|
bool can_represent_integral_type_p (tree type) const;
|
|||
|
|
|||
|
private:
|
|||
|
const real_format *m_format;
|
|||
|
};
|
|||
|
|
|||
|
template<typename T>
|
|||
|
inline format_helper::format_helper (const T &m)
|
|||
|
: m_format (m == VOIDmode ? 0 : REAL_MODE_FORMAT (m))
|
|||
|
{}
|
|||
|
|
|||
|
/* Declare functions in real.cc. */
|
|||
|
|
|||
|
/* True if the given mode has a NaN representation and the treatment of
|
|||
|
NaN operands is important. Certain optimizations, such as folding
|
|||
|
x * 0 into 0, are not correct for NaN operands, and are normally
|
|||
|
disabled for modes with NaNs. The user can ask for them to be
|
|||
|
done anyway using the -funsafe-math-optimizations switch. */
|
|||
|
extern bool HONOR_NANS (machine_mode);
|
|||
|
extern bool HONOR_NANS (const_tree);
|
|||
|
extern bool HONOR_NANS (const_rtx);
|
|||
|
|
|||
|
/* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
|
|||
|
extern bool HONOR_SNANS (machine_mode);
|
|||
|
extern bool HONOR_SNANS (const_tree);
|
|||
|
extern bool HONOR_SNANS (const_rtx);
|
|||
|
|
|||
|
/* As for HONOR_NANS, but true if the mode can represent infinity and
|
|||
|
the treatment of infinite values is important. */
|
|||
|
extern bool HONOR_INFINITIES (machine_mode);
|
|||
|
extern bool HONOR_INFINITIES (const_tree);
|
|||
|
extern bool HONOR_INFINITIES (const_rtx);
|
|||
|
|
|||
|
/* Like HONOR_NANS, but true if the given mode distinguishes between
|
|||
|
positive and negative zero, and the sign of zero is important. */
|
|||
|
extern bool HONOR_SIGNED_ZEROS (machine_mode);
|
|||
|
extern bool HONOR_SIGNED_ZEROS (const_tree);
|
|||
|
extern bool HONOR_SIGNED_ZEROS (const_rtx);
|
|||
|
|
|||
|
/* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
|
|||
|
and the rounding mode is important. */
|
|||
|
extern bool HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode);
|
|||
|
extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_tree);
|
|||
|
extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx);
|
|||
|
|
|||
|
/* Binary or unary arithmetic on tree_code. */
|
|||
|
extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *,
|
|||
|
const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Compare reals by tree_code. */
|
|||
|
extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is infinite. */
|
|||
|
extern bool real_isinf (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is infinite with SIGN. */
|
|||
|
extern bool real_isinf (const REAL_VALUE_TYPE *, bool sign);
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is a NaN. */
|
|||
|
extern bool real_isnan (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is a signaling NaN. */
|
|||
|
extern bool real_issignaling_nan (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Determine whether floating-point value R is a denormal. This
|
|||
|
function is only valid for normalized values. */
|
|||
|
inline bool
|
|||
|
real_isdenormal (const REAL_VALUE_TYPE *r, machine_mode mode)
|
|||
|
{
|
|||
|
return r->cl == rvc_normal && REAL_EXP (r) < REAL_MODE_FORMAT (mode)->emin;
|
|||
|
}
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is finite. */
|
|||
|
extern bool real_isfinite (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is negative. */
|
|||
|
extern bool real_isneg (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is minus zero. */
|
|||
|
extern bool real_isnegzero (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is plus or minus zero. */
|
|||
|
extern bool real_iszero (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is zero with SIGN. */
|
|||
|
extern bool real_iszero (const REAL_VALUE_TYPE *, bool sign);
|
|||
|
|
|||
|
/* Test relationships between reals. */
|
|||
|
extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
|||
|
extern bool real_equal (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
|||
|
extern bool real_less (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Extend or truncate to a new format. */
|
|||
|
extern void real_convert (REAL_VALUE_TYPE *, format_helper,
|
|||
|
const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Return true if truncating to NEW is exact. */
|
|||
|
extern bool exact_real_truncate (format_helper, const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Render R as a decimal floating point constant. */
|
|||
|
extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t,
|
|||
|
size_t, int);
|
|||
|
|
|||
|
/* Render R as a decimal floating point constant, rounded so as to be
|
|||
|
parsed back to the same value when interpreted in mode MODE. */
|
|||
|
extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t,
|
|||
|
size_t, int, machine_mode);
|
|||
|
|
|||
|
/* Render R as a hexadecimal floating point constant. */
|
|||
|
extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *,
|
|||
|
size_t, size_t, int);
|
|||
|
|
|||
|
/* Render R as an integer. */
|
|||
|
extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Initialize R from a decimal or hexadecimal string. Return -1 if
|
|||
|
the value underflows, +1 if overflows, and 0 otherwise. */
|
|||
|
extern int real_from_string (REAL_VALUE_TYPE *, const char *);
|
|||
|
/* Wrapper to allow different internal representation for decimal floats. */
|
|||
|
extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, format_helper);
|
|||
|
|
|||
|
extern long real_to_target (long *, const REAL_VALUE_TYPE *, format_helper);
|
|||
|
|
|||
|
extern void real_from_target (REAL_VALUE_TYPE *, const long *,
|
|||
|
format_helper);
|
|||
|
|
|||
|
extern void real_inf (REAL_VALUE_TYPE *, bool sign = false);
|
|||
|
|
|||
|
extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, format_helper);
|
|||
|
|
|||
|
extern void real_maxval (REAL_VALUE_TYPE *, int, machine_mode);
|
|||
|
|
|||
|
extern void real_2expN (REAL_VALUE_TYPE *, int, format_helper);
|
|||
|
|
|||
|
extern unsigned int real_hash (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
|
|||
|
/* Target formats defined in real.cc. */
|
|||
|
extern const struct real_format ieee_single_format;
|
|||
|
extern const struct real_format mips_single_format;
|
|||
|
extern const struct real_format motorola_single_format;
|
|||
|
extern const struct real_format spu_single_format;
|
|||
|
extern const struct real_format ieee_double_format;
|
|||
|
extern const struct real_format mips_double_format;
|
|||
|
extern const struct real_format motorola_double_format;
|
|||
|
extern const struct real_format ieee_extended_motorola_format;
|
|||
|
extern const struct real_format ieee_extended_intel_96_format;
|
|||
|
extern const struct real_format ieee_extended_intel_96_round_53_format;
|
|||
|
extern const struct real_format ieee_extended_intel_128_format;
|
|||
|
extern const struct real_format ibm_extended_format;
|
|||
|
extern const struct real_format mips_extended_format;
|
|||
|
extern const struct real_format ieee_quad_format;
|
|||
|
extern const struct real_format mips_quad_format;
|
|||
|
extern const struct real_format vax_f_format;
|
|||
|
extern const struct real_format vax_d_format;
|
|||
|
extern const struct real_format vax_g_format;
|
|||
|
extern const struct real_format real_internal_format;
|
|||
|
extern const struct real_format decimal_single_format;
|
|||
|
extern const struct real_format decimal_double_format;
|
|||
|
extern const struct real_format decimal_quad_format;
|
|||
|
extern const struct real_format ieee_half_format;
|
|||
|
extern const struct real_format arm_half_format;
|
|||
|
extern const struct real_format arm_bfloat_half_format;
|
|||
|
|
|||
|
|
|||
|
/* ====================================================================== */
|
|||
|
/* Crap. */
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is infinite. */
|
|||
|
#define REAL_VALUE_ISINF(x) real_isinf (&(x))
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is a NaN. */
|
|||
|
#define REAL_VALUE_ISNAN(x) real_isnan (&(x))
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is a signaling NaN. */
|
|||
|
#define REAL_VALUE_ISSIGNALING_NAN(x) real_issignaling_nan (&(x))
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is negative. */
|
|||
|
#define REAL_VALUE_NEGATIVE(x) real_isneg (&(x))
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is minus zero. */
|
|||
|
#define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x))
|
|||
|
|
|||
|
/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
|
|||
|
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \
|
|||
|
real_to_target (OUT, &(IN), \
|
|||
|
float_mode_for_size (LONG_DOUBLE_TYPE_SIZE).require ())
|
|||
|
|
|||
|
#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
|
|||
|
real_to_target (OUT, &(IN), float_mode_for_size (64).require ())
|
|||
|
|
|||
|
/* IN is a REAL_VALUE_TYPE. OUT is a long. */
|
|||
|
#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
|
|||
|
((OUT) = real_to_target (NULL, &(IN), float_mode_for_size (32).require ()))
|
|||
|
|
|||
|
/* Real values to IEEE 754 decimal floats. */
|
|||
|
|
|||
|
/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
|
|||
|
#define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \
|
|||
|
real_to_target (OUT, &(IN), decimal_float_mode_for_size (128).require ())
|
|||
|
|
|||
|
#define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \
|
|||
|
real_to_target (OUT, &(IN), decimal_float_mode_for_size (64).require ())
|
|||
|
|
|||
|
/* IN is a REAL_VALUE_TYPE. OUT is a long. */
|
|||
|
#define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \
|
|||
|
((OUT) = real_to_target (NULL, &(IN), \
|
|||
|
decimal_float_mode_for_size (32).require ()))
|
|||
|
|
|||
|
extern REAL_VALUE_TYPE real_value_truncate (format_helper, REAL_VALUE_TYPE);
|
|||
|
|
|||
|
extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *);
|
|||
|
extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
extern int significand_size (format_helper);
|
|||
|
|
|||
|
extern REAL_VALUE_TYPE real_from_string2 (const char *, format_helper);
|
|||
|
|
|||
|
#define REAL_VALUE_ATOF(s, m) \
|
|||
|
real_from_string2 (s, m)
|
|||
|
|
|||
|
#define CONST_DOUBLE_ATOF(s, m) \
|
|||
|
const_double_from_real_value (real_from_string2 (s, m), m)
|
|||
|
|
|||
|
#define REAL_VALUE_FIX(r) \
|
|||
|
real_to_integer (&(r))
|
|||
|
|
|||
|
/* ??? Not quite right. */
|
|||
|
#define REAL_VALUE_UNSIGNED_FIX(r) \
|
|||
|
real_to_integer (&(r))
|
|||
|
|
|||
|
/* ??? These were added for Paranoia support. */
|
|||
|
|
|||
|
/* Return floor log2(R). */
|
|||
|
extern int real_exponent (const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* R = A * 2**EXP. */
|
|||
|
extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
|
|||
|
|
|||
|
/* **** End of software floating point emulator interface macros **** */
|
|||
|
|
|||
|
/* Constant real values 0, 1, 2, -1 and 0.5. */
|
|||
|
|
|||
|
extern REAL_VALUE_TYPE dconst0;
|
|||
|
extern REAL_VALUE_TYPE dconst1;
|
|||
|
extern REAL_VALUE_TYPE dconst2;
|
|||
|
extern REAL_VALUE_TYPE dconstm1;
|
|||
|
extern REAL_VALUE_TYPE dconsthalf;
|
|||
|
extern REAL_VALUE_TYPE dconstinf;
|
|||
|
extern REAL_VALUE_TYPE dconstninf;
|
|||
|
|
|||
|
#define dconst_e() (*dconst_e_ptr ())
|
|||
|
#define dconst_third() (*dconst_third_ptr ())
|
|||
|
#define dconst_quarter() (*dconst_quarter_ptr ())
|
|||
|
#define dconst_sixth() (*dconst_sixth_ptr ())
|
|||
|
#define dconst_ninth() (*dconst_ninth_ptr ())
|
|||
|
#define dconst_sqrt2() (*dconst_sqrt2_ptr ())
|
|||
|
|
|||
|
/* Function to return the real value special constant 'e'. */
|
|||
|
extern const REAL_VALUE_TYPE * dconst_e_ptr (void);
|
|||
|
|
|||
|
/* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
|
|||
|
extern const REAL_VALUE_TYPE *dconst_third_ptr (void);
|
|||
|
extern const REAL_VALUE_TYPE *dconst_quarter_ptr (void);
|
|||
|
extern const REAL_VALUE_TYPE *dconst_sixth_ptr (void);
|
|||
|
extern const REAL_VALUE_TYPE *dconst_ninth_ptr (void);
|
|||
|
|
|||
|
/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
|
|||
|
extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void);
|
|||
|
|
|||
|
/* Function to return a real value (not a tree node)
|
|||
|
from a given integer constant. */
|
|||
|
REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree);
|
|||
|
|
|||
|
/* Return a CONST_DOUBLE with value R and mode M. */
|
|||
|
extern rtx const_double_from_real_value (REAL_VALUE_TYPE, machine_mode);
|
|||
|
|
|||
|
/* Replace R by 1/R in the given format, if the result is exact. */
|
|||
|
extern bool exact_real_inverse (format_helper, REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Return true if arithmetic on values in IMODE that were promoted
|
|||
|
from values in TMODE is equivalent to direct arithmetic on values
|
|||
|
in TMODE. */
|
|||
|
bool real_can_shorten_arithmetic (machine_mode, machine_mode);
|
|||
|
|
|||
|
/* In tree.cc: wrap up a REAL_VALUE_TYPE in a tree node. */
|
|||
|
extern tree build_real (tree, REAL_VALUE_TYPE);
|
|||
|
|
|||
|
/* Likewise, but first truncate the value to the type. */
|
|||
|
extern tree build_real_truncate (tree, REAL_VALUE_TYPE);
|
|||
|
|
|||
|
/* Calculate R as X raised to the integer exponent N in format FMT. */
|
|||
|
extern bool real_powi (REAL_VALUE_TYPE *, format_helper,
|
|||
|
const REAL_VALUE_TYPE *, HOST_WIDE_INT);
|
|||
|
|
|||
|
/* Standard round to integer value functions. */
|
|||
|
extern void real_trunc (REAL_VALUE_TYPE *, format_helper,
|
|||
|
const REAL_VALUE_TYPE *);
|
|||
|
extern void real_floor (REAL_VALUE_TYPE *, format_helper,
|
|||
|
const REAL_VALUE_TYPE *);
|
|||
|
extern void real_ceil (REAL_VALUE_TYPE *, format_helper,
|
|||
|
const REAL_VALUE_TYPE *);
|
|||
|
extern void real_round (REAL_VALUE_TYPE *, format_helper,
|
|||
|
const REAL_VALUE_TYPE *);
|
|||
|
extern void real_roundeven (REAL_VALUE_TYPE *, format_helper,
|
|||
|
const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Set the sign of R to the sign of X. */
|
|||
|
extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Check whether the real constant value given is an integer. */
|
|||
|
extern bool real_isinteger (const REAL_VALUE_TYPE *, format_helper);
|
|||
|
extern bool real_isinteger (const REAL_VALUE_TYPE *, HOST_WIDE_INT *);
|
|||
|
|
|||
|
/* Calculate nextafter (X, Y) in format FMT. */
|
|||
|
extern bool real_nextafter (REAL_VALUE_TYPE *, format_helper,
|
|||
|
const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
|
|||
|
|
|||
|
/* Write into BUF the maximum representable finite floating-point
|
|||
|
number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
|
|||
|
float string. BUF must be large enough to contain the result. */
|
|||
|
extern void get_max_float (const struct real_format *, char *, size_t, bool);
|
|||
|
|
|||
|
#ifndef GENERATOR_FILE
|
|||
|
/* real related routines. */
|
|||
|
extern wide_int real_to_integer (const REAL_VALUE_TYPE *, bool *, int);
|
|||
|
extern void real_from_integer (REAL_VALUE_TYPE *, format_helper,
|
|||
|
const wide_int_ref &, signop);
|
|||
|
#endif
|
|||
|
|
|||
|
/* Fills r with the largest value such that 1 + r*r won't overflow.
|
|||
|
This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */
|
|||
|
extern void build_sinatan_real (REAL_VALUE_TYPE *, tree);
|
|||
|
|
|||
|
#endif /* ! GCC_REAL_H */
|