1014 lines
29 KiB
C
1014 lines
29 KiB
C
|
/* Header file for SSA iterators.
|
||
|
Copyright (C) 2013-2023 Free Software Foundation, Inc.
|
||
|
|
||
|
This file is part of GCC.
|
||
|
|
||
|
GCC is free software; you can redistribute it and/or modify it under
|
||
|
the terms of the GNU General Public License as published by the Free
|
||
|
Software Foundation; either version 3, or (at your option) any later
|
||
|
version.
|
||
|
|
||
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with GCC; see the file COPYING3. If not see
|
||
|
<http://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#ifndef GCC_SSA_ITERATORS_H
|
||
|
#define GCC_SSA_ITERATORS_H
|
||
|
|
||
|
/* Immediate use lists are used to directly access all uses for an SSA
|
||
|
name and get pointers to the statement for each use.
|
||
|
|
||
|
The structure ssa_use_operand_t consists of PREV and NEXT pointers
|
||
|
to maintain the list. A USE pointer, which points to address where
|
||
|
the use is located and a LOC pointer which can point to the
|
||
|
statement where the use is located, or, in the case of the root
|
||
|
node, it points to the SSA name itself.
|
||
|
|
||
|
The list is anchored by an occurrence of ssa_operand_d *in* the
|
||
|
ssa_name node itself (named 'imm_uses'). This node is uniquely
|
||
|
identified by having a NULL USE pointer. and the LOC pointer
|
||
|
pointing back to the ssa_name node itself. This node forms the
|
||
|
base for a circular list, and initially this is the only node in
|
||
|
the list.
|
||
|
|
||
|
Fast iteration allows each use to be examined, but does not allow
|
||
|
any modifications to the uses or stmts.
|
||
|
|
||
|
Normal iteration allows insertion, deletion, and modification. the
|
||
|
iterator manages this by inserting a marker node into the list
|
||
|
immediately before the node currently being examined in the list.
|
||
|
this marker node is uniquely identified by having null stmt *and* a
|
||
|
null use pointer.
|
||
|
|
||
|
When iterating to the next use, the iteration routines check to see
|
||
|
if the node after the marker has changed. if it has, then the node
|
||
|
following the marker is now the next one to be visited. if not, the
|
||
|
marker node is moved past that node in the list (visualize it as
|
||
|
bumping the marker node through the list). this continues until
|
||
|
the marker node is moved to the original anchor position. the
|
||
|
marker node is then removed from the list.
|
||
|
|
||
|
If iteration is halted early, the marker node must be removed from
|
||
|
the list before continuing. */
|
||
|
struct imm_use_iterator
|
||
|
{
|
||
|
/* This is the current use the iterator is processing. */
|
||
|
ssa_use_operand_t *imm_use;
|
||
|
/* This marks the last use in the list (use node from SSA_NAME) */
|
||
|
ssa_use_operand_t *end_p;
|
||
|
/* This node is inserted and used to mark the end of the uses for a stmt. */
|
||
|
ssa_use_operand_t iter_node;
|
||
|
/* This is the next ssa_name to visit. IMM_USE may get removed before
|
||
|
the next one is traversed to, so it must be cached early. */
|
||
|
ssa_use_operand_t *next_imm_name;
|
||
|
};
|
||
|
|
||
|
|
||
|
/* Use this iterator when simply looking at stmts. Adding, deleting or
|
||
|
modifying stmts will cause this iterator to malfunction. */
|
||
|
|
||
|
#define FOR_EACH_IMM_USE_FAST(DEST, ITER, SSAVAR) \
|
||
|
for ((DEST) = first_readonly_imm_use (&(ITER), (SSAVAR)); \
|
||
|
!end_readonly_imm_use_p (&(ITER)); \
|
||
|
(void) ((DEST) = next_readonly_imm_use (&(ITER))))
|
||
|
|
||
|
/* Forward declare for use in the class below. */
|
||
|
inline void end_imm_use_stmt_traverse (imm_use_iterator *);
|
||
|
|
||
|
/* arrange to automatically call, upon descruction, end_imm_use_stmt_traverse
|
||
|
with a given pointer to imm_use_iterator. */
|
||
|
struct auto_end_imm_use_stmt_traverse
|
||
|
{
|
||
|
imm_use_iterator *imm;
|
||
|
auto_end_imm_use_stmt_traverse (imm_use_iterator *imm)
|
||
|
: imm (imm) {}
|
||
|
~auto_end_imm_use_stmt_traverse ()
|
||
|
{ end_imm_use_stmt_traverse (imm); }
|
||
|
};
|
||
|
|
||
|
/* Use this iterator to visit each stmt which has a use of SSAVAR. The
|
||
|
destructor of the auto_end_imm_use_stmt_traverse object deals with removing
|
||
|
ITER from SSAVAR's IMM_USE list even when leaving the scope early. */
|
||
|
|
||
|
#define FOR_EACH_IMM_USE_STMT(STMT, ITER, SSAVAR) \
|
||
|
for (struct auto_end_imm_use_stmt_traverse \
|
||
|
auto_end_imm_use_stmt_traverse \
|
||
|
((((STMT) = first_imm_use_stmt (&(ITER), (SSAVAR))), \
|
||
|
&(ITER))); \
|
||
|
!end_imm_use_stmt_p (&(ITER)); \
|
||
|
(void) ((STMT) = next_imm_use_stmt (&(ITER))))
|
||
|
|
||
|
/* Use this iterator in combination with FOR_EACH_IMM_USE_STMT to
|
||
|
get access to each occurrence of ssavar on the stmt returned by
|
||
|
that iterator.. for instance:
|
||
|
|
||
|
FOR_EACH_IMM_USE_STMT (stmt, iter, ssavar)
|
||
|
{
|
||
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
||
|
{
|
||
|
SET_USE (use_p, blah);
|
||
|
}
|
||
|
update_stmt (stmt);
|
||
|
} */
|
||
|
|
||
|
#define FOR_EACH_IMM_USE_ON_STMT(DEST, ITER) \
|
||
|
for ((DEST) = first_imm_use_on_stmt (&(ITER)); \
|
||
|
!end_imm_use_on_stmt_p (&(ITER)); \
|
||
|
(void) ((DEST) = next_imm_use_on_stmt (&(ITER))))
|
||
|
|
||
|
|
||
|
|
||
|
extern bool single_imm_use_1 (const ssa_use_operand_t *head,
|
||
|
use_operand_p *use_p, gimple **stmt);
|
||
|
|
||
|
|
||
|
enum ssa_op_iter_type {
|
||
|
ssa_op_iter_none = 0,
|
||
|
ssa_op_iter_tree,
|
||
|
ssa_op_iter_use,
|
||
|
ssa_op_iter_def
|
||
|
};
|
||
|
|
||
|
/* This structure is used in the operand iterator loops. It contains the
|
||
|
items required to determine which operand is retrieved next. During
|
||
|
optimization, this structure is scalarized, and any unused fields are
|
||
|
optimized away, resulting in little overhead. */
|
||
|
|
||
|
struct ssa_op_iter
|
||
|
{
|
||
|
enum ssa_op_iter_type iter_type;
|
||
|
bool done;
|
||
|
int flags;
|
||
|
unsigned i;
|
||
|
unsigned numops;
|
||
|
use_optype_p uses;
|
||
|
gimple *stmt;
|
||
|
};
|
||
|
|
||
|
/* NOTE: Keep these in sync with doc/tree-ssa.texi. */
|
||
|
/* These flags are used to determine which operands are returned during
|
||
|
execution of the loop. */
|
||
|
#define SSA_OP_USE 0x01 /* Real USE operands. */
|
||
|
#define SSA_OP_DEF 0x02 /* Real DEF operands. */
|
||
|
#define SSA_OP_VUSE 0x04 /* VUSE operands. */
|
||
|
#define SSA_OP_VDEF 0x08 /* VDEF operands. */
|
||
|
/* These are commonly grouped operand flags. */
|
||
|
#define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE)
|
||
|
#define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF)
|
||
|
#define SSA_OP_ALL_VIRTUALS (SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_DEFS)
|
||
|
#define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)
|
||
|
#define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)
|
||
|
#define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)
|
||
|
|
||
|
/* This macro executes a loop over the operands of STMT specified in FLAG,
|
||
|
returning each operand as a 'tree' in the variable TREEVAR. ITER is an
|
||
|
ssa_op_iter structure used to control the loop. */
|
||
|
#define FOR_EACH_SSA_TREE_OPERAND(TREEVAR, STMT, ITER, FLAGS) \
|
||
|
for (TREEVAR = op_iter_init_tree (&(ITER), STMT, FLAGS); \
|
||
|
!op_iter_done (&(ITER)); \
|
||
|
(void) (TREEVAR = op_iter_next_tree (&(ITER))))
|
||
|
|
||
|
/* This macro executes a loop over the operands of STMT specified in FLAG,
|
||
|
returning each operand as a 'use_operand_p' in the variable USEVAR.
|
||
|
ITER is an ssa_op_iter structure used to control the loop. */
|
||
|
#define FOR_EACH_SSA_USE_OPERAND(USEVAR, STMT, ITER, FLAGS) \
|
||
|
for (USEVAR = op_iter_init_use (&(ITER), STMT, FLAGS); \
|
||
|
!op_iter_done (&(ITER)); \
|
||
|
USEVAR = op_iter_next_use (&(ITER)))
|
||
|
|
||
|
/* This macro executes a loop over the operands of STMT specified in FLAG,
|
||
|
returning each operand as a 'def_operand_p' in the variable DEFVAR.
|
||
|
ITER is an ssa_op_iter structure used to control the loop. */
|
||
|
#define FOR_EACH_SSA_DEF_OPERAND(DEFVAR, STMT, ITER, FLAGS) \
|
||
|
for (DEFVAR = op_iter_init_def (&(ITER), STMT, FLAGS); \
|
||
|
!op_iter_done (&(ITER)); \
|
||
|
DEFVAR = op_iter_next_def (&(ITER)))
|
||
|
|
||
|
/* This macro will execute a loop over all the arguments of a PHI which
|
||
|
match FLAGS. A use_operand_p is always returned via USEVAR. FLAGS
|
||
|
can be either SSA_OP_USE or SSA_OP_VIRTUAL_USES or SSA_OP_ALL_USES. */
|
||
|
#define FOR_EACH_PHI_ARG(USEVAR, STMT, ITER, FLAGS) \
|
||
|
for ((USEVAR) = op_iter_init_phiuse (&(ITER), STMT, FLAGS); \
|
||
|
!op_iter_done (&(ITER)); \
|
||
|
(USEVAR) = op_iter_next_use (&(ITER)))
|
||
|
|
||
|
|
||
|
/* This macro will execute a loop over a stmt, regardless of whether it is
|
||
|
a real stmt or a PHI node, looking at the USE nodes matching FLAGS. */
|
||
|
#define FOR_EACH_PHI_OR_STMT_USE(USEVAR, STMT, ITER, FLAGS) \
|
||
|
for ((USEVAR) = (gimple_code (STMT) == GIMPLE_PHI \
|
||
|
? op_iter_init_phiuse (&(ITER), \
|
||
|
as_a <gphi *> (STMT), \
|
||
|
FLAGS) \
|
||
|
: op_iter_init_use (&(ITER), STMT, FLAGS)); \
|
||
|
!op_iter_done (&(ITER)); \
|
||
|
(USEVAR) = op_iter_next_use (&(ITER)))
|
||
|
|
||
|
/* This macro will execute a loop over a stmt, regardless of whether it is
|
||
|
a real stmt or a PHI node, looking at the DEF nodes matching FLAGS. */
|
||
|
#define FOR_EACH_PHI_OR_STMT_DEF(DEFVAR, STMT, ITER, FLAGS) \
|
||
|
for ((DEFVAR) = (gimple_code (STMT) == GIMPLE_PHI \
|
||
|
? op_iter_init_phidef (&(ITER), \
|
||
|
as_a <gphi *> (STMT), \
|
||
|
FLAGS) \
|
||
|
: op_iter_init_def (&(ITER), STMT, FLAGS)); \
|
||
|
!op_iter_done (&(ITER)); \
|
||
|
(DEFVAR) = op_iter_next_def (&(ITER)))
|
||
|
|
||
|
/* This macro returns an operand in STMT as a tree if it is the ONLY
|
||
|
operand matching FLAGS. If there are 0 or more than 1 operand matching
|
||
|
FLAGS, then NULL_TREE is returned. */
|
||
|
#define SINGLE_SSA_TREE_OPERAND(STMT, FLAGS) \
|
||
|
single_ssa_tree_operand (STMT, FLAGS)
|
||
|
|
||
|
/* This macro returns an operand in STMT as a use_operand_p if it is the ONLY
|
||
|
operand matching FLAGS. If there are 0 or more than 1 operand matching
|
||
|
FLAGS, then NULL_USE_OPERAND_P is returned. */
|
||
|
#define SINGLE_SSA_USE_OPERAND(STMT, FLAGS) \
|
||
|
single_ssa_use_operand (STMT, FLAGS)
|
||
|
|
||
|
/* This macro returns an operand in STMT as a def_operand_p if it is the ONLY
|
||
|
operand matching FLAGS. If there are 0 or more than 1 operand matching
|
||
|
FLAGS, then NULL_DEF_OPERAND_P is returned. */
|
||
|
#define SINGLE_SSA_DEF_OPERAND(STMT, FLAGS) \
|
||
|
single_ssa_def_operand (STMT, FLAGS)
|
||
|
|
||
|
/* This macro returns TRUE if there are no operands matching FLAGS in STMT. */
|
||
|
#define ZERO_SSA_OPERANDS(STMT, FLAGS) zero_ssa_operands (STMT, FLAGS)
|
||
|
|
||
|
/* This macro counts the number of operands in STMT matching FLAGS. */
|
||
|
#define NUM_SSA_OPERANDS(STMT, FLAGS) num_ssa_operands (STMT, FLAGS)
|
||
|
|
||
|
|
||
|
/* Delink an immediate_uses node from its chain. */
|
||
|
inline void
|
||
|
delink_imm_use (ssa_use_operand_t *linknode)
|
||
|
{
|
||
|
/* Return if this node is not in a list. */
|
||
|
if (linknode->prev == NULL)
|
||
|
return;
|
||
|
|
||
|
linknode->prev->next = linknode->next;
|
||
|
linknode->next->prev = linknode->prev;
|
||
|
linknode->prev = NULL;
|
||
|
linknode->next = NULL;
|
||
|
}
|
||
|
|
||
|
/* Link ssa_imm_use node LINKNODE into the chain for LIST. */
|
||
|
inline void
|
||
|
link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
|
||
|
{
|
||
|
/* Link the new node at the head of the list. If we are in the process of
|
||
|
traversing the list, we won't visit any new nodes added to it. */
|
||
|
linknode->prev = list;
|
||
|
linknode->next = list->next;
|
||
|
list->next->prev = linknode;
|
||
|
list->next = linknode;
|
||
|
}
|
||
|
|
||
|
/* Link ssa_imm_use node LINKNODE into the chain for DEF. */
|
||
|
inline void
|
||
|
link_imm_use (ssa_use_operand_t *linknode, tree def)
|
||
|
{
|
||
|
ssa_use_operand_t *root;
|
||
|
|
||
|
if (!def || TREE_CODE (def) != SSA_NAME)
|
||
|
linknode->prev = NULL;
|
||
|
else
|
||
|
{
|
||
|
root = &(SSA_NAME_IMM_USE_NODE (def));
|
||
|
if (linknode->use)
|
||
|
gcc_checking_assert (*(linknode->use) == def);
|
||
|
link_imm_use_to_list (linknode, root);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Set the value of a use pointed to by USE to VAL. */
|
||
|
inline void
|
||
|
set_ssa_use_from_ptr (use_operand_p use, tree val)
|
||
|
{
|
||
|
delink_imm_use (use);
|
||
|
*(use->use) = val;
|
||
|
link_imm_use (use, val);
|
||
|
}
|
||
|
|
||
|
/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
|
||
|
in STMT. */
|
||
|
inline void
|
||
|
link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple *stmt)
|
||
|
{
|
||
|
if (stmt)
|
||
|
link_imm_use (linknode, def);
|
||
|
else
|
||
|
link_imm_use (linknode, NULL);
|
||
|
linknode->loc.stmt = stmt;
|
||
|
}
|
||
|
|
||
|
/* Relink a new node in place of an old node in the list. */
|
||
|
inline void
|
||
|
relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
|
||
|
{
|
||
|
/* The node one had better be in the same list. */
|
||
|
gcc_checking_assert (*(old->use) == *(node->use));
|
||
|
node->prev = old->prev;
|
||
|
node->next = old->next;
|
||
|
if (old->prev)
|
||
|
{
|
||
|
old->prev->next = node;
|
||
|
old->next->prev = node;
|
||
|
/* Remove the old node from the list. */
|
||
|
old->prev = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
|
||
|
in STMT. */
|
||
|
inline void
|
||
|
relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
|
||
|
gimple *stmt)
|
||
|
{
|
||
|
if (stmt)
|
||
|
relink_imm_use (linknode, old);
|
||
|
else
|
||
|
link_imm_use (linknode, NULL);
|
||
|
linknode->loc.stmt = stmt;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Return true is IMM has reached the end of the immediate use list. */
|
||
|
inline bool
|
||
|
end_readonly_imm_use_p (const imm_use_iterator *imm)
|
||
|
{
|
||
|
return (imm->imm_use == imm->end_p);
|
||
|
}
|
||
|
|
||
|
/* Initialize iterator IMM to process the list for VAR. */
|
||
|
inline use_operand_p
|
||
|
first_readonly_imm_use (imm_use_iterator *imm, tree var)
|
||
|
{
|
||
|
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
||
|
imm->imm_use = imm->end_p->next;
|
||
|
imm->iter_node.next = imm->imm_use->next;
|
||
|
if (end_readonly_imm_use_p (imm))
|
||
|
return NULL_USE_OPERAND_P;
|
||
|
return imm->imm_use;
|
||
|
}
|
||
|
|
||
|
/* Bump IMM to the next use in the list. */
|
||
|
inline use_operand_p
|
||
|
next_readonly_imm_use (imm_use_iterator *imm)
|
||
|
{
|
||
|
use_operand_p old = imm->imm_use;
|
||
|
|
||
|
/* If this assertion fails, it indicates the 'next' pointer has changed
|
||
|
since the last bump. This indicates that the list is being modified
|
||
|
via stmt changes, or SET_USE, or somesuch thing, and you need to be
|
||
|
using the SAFE version of the iterator. */
|
||
|
if (flag_checking)
|
||
|
{
|
||
|
gcc_assert (imm->iter_node.next == old->next);
|
||
|
imm->iter_node.next = old->next->next;
|
||
|
}
|
||
|
|
||
|
imm->imm_use = old->next;
|
||
|
if (end_readonly_imm_use_p (imm))
|
||
|
return NULL_USE_OPERAND_P;
|
||
|
return imm->imm_use;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Return true if VAR has no nondebug uses. */
|
||
|
inline bool
|
||
|
has_zero_uses (const_tree var)
|
||
|
{
|
||
|
const ssa_use_operand_t *const head = &(SSA_NAME_IMM_USE_NODE (var));
|
||
|
const ssa_use_operand_t *ptr;
|
||
|
|
||
|
for (ptr = head->next; ptr != head; ptr = ptr->next)
|
||
|
if (USE_STMT (ptr) && !is_gimple_debug (USE_STMT (ptr)))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* Return true if VAR has a single nondebug use. */
|
||
|
inline bool
|
||
|
has_single_use (const_tree var)
|
||
|
{
|
||
|
const ssa_use_operand_t *const head = &(SSA_NAME_IMM_USE_NODE (var));
|
||
|
const ssa_use_operand_t *ptr;
|
||
|
bool single = false;
|
||
|
|
||
|
for (ptr = head->next; ptr != head; ptr = ptr->next)
|
||
|
if (USE_STMT(ptr) && !is_gimple_debug (USE_STMT (ptr)))
|
||
|
{
|
||
|
if (single)
|
||
|
return false;
|
||
|
else
|
||
|
single = true;
|
||
|
}
|
||
|
|
||
|
return single;
|
||
|
}
|
||
|
|
||
|
/* If VAR has only a single immediate nondebug use, return true, and
|
||
|
set USE_P and STMT to the use pointer and stmt of occurrence. */
|
||
|
inline bool
|
||
|
single_imm_use (const_tree var, use_operand_p *use_p, gimple **stmt)
|
||
|
{
|
||
|
const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
||
|
|
||
|
/* If there aren't any uses whatsoever, we're done. */
|
||
|
if (ptr == ptr->next)
|
||
|
{
|
||
|
return_false:
|
||
|
*use_p = NULL_USE_OPERAND_P;
|
||
|
*stmt = NULL;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* If there's a single use, check that it's not a debug stmt. */
|
||
|
if (ptr == ptr->next->next)
|
||
|
{
|
||
|
if (USE_STMT (ptr->next) && !is_gimple_debug (USE_STMT (ptr->next)))
|
||
|
{
|
||
|
*use_p = ptr->next;
|
||
|
*stmt = ptr->next->loc.stmt;
|
||
|
return true;
|
||
|
}
|
||
|
else
|
||
|
goto return_false;
|
||
|
}
|
||
|
|
||
|
return single_imm_use_1 (ptr, use_p, stmt);
|
||
|
}
|
||
|
|
||
|
/* Return the number of nondebug immediate uses of VAR. */
|
||
|
inline unsigned int
|
||
|
num_imm_uses (const_tree var)
|
||
|
{
|
||
|
const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
|
||
|
const ssa_use_operand_t *ptr;
|
||
|
unsigned int num = 0;
|
||
|
|
||
|
if (!MAY_HAVE_DEBUG_BIND_STMTS)
|
||
|
{
|
||
|
for (ptr = start->next; ptr != start; ptr = ptr->next)
|
||
|
if (USE_STMT (ptr))
|
||
|
num++;
|
||
|
}
|
||
|
else
|
||
|
for (ptr = start->next; ptr != start; ptr = ptr->next)
|
||
|
if (USE_STMT (ptr) && !is_gimple_debug (USE_STMT (ptr)))
|
||
|
num++;
|
||
|
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
/* ----------------------------------------------------------------------- */
|
||
|
|
||
|
/* The following set of routines are used to iterator over various type of
|
||
|
SSA operands. */
|
||
|
|
||
|
/* Return true if PTR is finished iterating. */
|
||
|
inline bool
|
||
|
op_iter_done (const ssa_op_iter *ptr)
|
||
|
{
|
||
|
return ptr->done;
|
||
|
}
|
||
|
|
||
|
/* Get the next iterator use value for PTR. */
|
||
|
inline use_operand_p
|
||
|
op_iter_next_use (ssa_op_iter *ptr)
|
||
|
{
|
||
|
use_operand_p use_p;
|
||
|
gcc_checking_assert (ptr->iter_type == ssa_op_iter_use);
|
||
|
if (ptr->uses)
|
||
|
{
|
||
|
use_p = USE_OP_PTR (ptr->uses);
|
||
|
ptr->uses = ptr->uses->next;
|
||
|
return use_p;
|
||
|
}
|
||
|
if (ptr->i < ptr->numops)
|
||
|
{
|
||
|
return PHI_ARG_DEF_PTR (ptr->stmt, (ptr->i)++);
|
||
|
}
|
||
|
ptr->done = true;
|
||
|
return NULL_USE_OPERAND_P;
|
||
|
}
|
||
|
|
||
|
/* Get the next iterator def value for PTR. */
|
||
|
inline def_operand_p
|
||
|
op_iter_next_def (ssa_op_iter *ptr)
|
||
|
{
|
||
|
gcc_checking_assert (ptr->iter_type == ssa_op_iter_def);
|
||
|
if (ptr->flags & SSA_OP_VDEF)
|
||
|
{
|
||
|
tree *p;
|
||
|
ptr->flags &= ~SSA_OP_VDEF;
|
||
|
p = gimple_vdef_ptr (ptr->stmt);
|
||
|
if (p && *p)
|
||
|
return p;
|
||
|
}
|
||
|
if (ptr->flags & SSA_OP_DEF)
|
||
|
{
|
||
|
while (ptr->i < ptr->numops)
|
||
|
{
|
||
|
tree *val = gimple_op_ptr (ptr->stmt, ptr->i);
|
||
|
ptr->i++;
|
||
|
if (*val)
|
||
|
{
|
||
|
if (TREE_CODE (*val) == TREE_LIST)
|
||
|
val = &TREE_VALUE (*val);
|
||
|
if (TREE_CODE (*val) == SSA_NAME
|
||
|
|| is_gimple_reg (*val))
|
||
|
return val;
|
||
|
}
|
||
|
}
|
||
|
ptr->flags &= ~SSA_OP_DEF;
|
||
|
}
|
||
|
|
||
|
ptr->done = true;
|
||
|
return NULL_DEF_OPERAND_P;
|
||
|
}
|
||
|
|
||
|
/* Get the next iterator tree value for PTR. */
|
||
|
inline tree
|
||
|
op_iter_next_tree (ssa_op_iter *ptr)
|
||
|
{
|
||
|
tree val;
|
||
|
gcc_checking_assert (ptr->iter_type == ssa_op_iter_tree);
|
||
|
if (ptr->uses)
|
||
|
{
|
||
|
val = USE_OP (ptr->uses);
|
||
|
ptr->uses = ptr->uses->next;
|
||
|
return val;
|
||
|
}
|
||
|
if (ptr->flags & SSA_OP_VDEF)
|
||
|
{
|
||
|
ptr->flags &= ~SSA_OP_VDEF;
|
||
|
if ((val = gimple_vdef (ptr->stmt)))
|
||
|
return val;
|
||
|
}
|
||
|
if (ptr->flags & SSA_OP_DEF)
|
||
|
{
|
||
|
while (ptr->i < ptr->numops)
|
||
|
{
|
||
|
val = gimple_op (ptr->stmt, ptr->i);
|
||
|
ptr->i++;
|
||
|
if (val)
|
||
|
{
|
||
|
if (TREE_CODE (val) == TREE_LIST)
|
||
|
val = TREE_VALUE (val);
|
||
|
if (TREE_CODE (val) == SSA_NAME
|
||
|
|| is_gimple_reg (val))
|
||
|
return val;
|
||
|
}
|
||
|
}
|
||
|
ptr->flags &= ~SSA_OP_DEF;
|
||
|
}
|
||
|
|
||
|
ptr->done = true;
|
||
|
return NULL_TREE;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* This functions clears the iterator PTR, and marks it done. This is normally
|
||
|
used to prevent warnings in the compile about might be uninitialized
|
||
|
components. */
|
||
|
|
||
|
inline void
|
||
|
clear_and_done_ssa_iter (ssa_op_iter *ptr)
|
||
|
{
|
||
|
ptr->i = 0;
|
||
|
ptr->numops = 0;
|
||
|
ptr->uses = NULL;
|
||
|
ptr->iter_type = ssa_op_iter_none;
|
||
|
ptr->stmt = NULL;
|
||
|
ptr->done = true;
|
||
|
ptr->flags = 0;
|
||
|
}
|
||
|
|
||
|
/* Initialize the iterator PTR to the virtual defs in STMT. */
|
||
|
inline void
|
||
|
op_iter_init (ssa_op_iter *ptr, gimple *stmt, int flags)
|
||
|
{
|
||
|
/* PHI nodes require a different iterator initialization path. We
|
||
|
do not support iterating over virtual defs or uses without
|
||
|
iterating over defs or uses at the same time. */
|
||
|
gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI
|
||
|
&& (!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF))
|
||
|
&& (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE)));
|
||
|
ptr->numops = 0;
|
||
|
if (flags & (SSA_OP_DEF | SSA_OP_VDEF))
|
||
|
{
|
||
|
switch (gimple_code (stmt))
|
||
|
{
|
||
|
case GIMPLE_ASSIGN:
|
||
|
case GIMPLE_CALL:
|
||
|
ptr->numops = 1;
|
||
|
break;
|
||
|
case GIMPLE_ASM:
|
||
|
ptr->numops = gimple_asm_noutputs (as_a <gasm *> (stmt));
|
||
|
break;
|
||
|
case GIMPLE_TRANSACTION:
|
||
|
ptr->numops = 0;
|
||
|
flags &= ~SSA_OP_DEF;
|
||
|
break;
|
||
|
default:
|
||
|
ptr->numops = 0;
|
||
|
flags &= ~(SSA_OP_DEF | SSA_OP_VDEF);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL;
|
||
|
if (!(flags & SSA_OP_VUSE)
|
||
|
&& ptr->uses
|
||
|
&& gimple_vuse (stmt) != NULL_TREE)
|
||
|
ptr->uses = ptr->uses->next;
|
||
|
ptr->done = false;
|
||
|
ptr->i = 0;
|
||
|
|
||
|
ptr->stmt = stmt;
|
||
|
ptr->flags = flags;
|
||
|
}
|
||
|
|
||
|
/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
|
||
|
the first use. */
|
||
|
inline use_operand_p
|
||
|
op_iter_init_use (ssa_op_iter *ptr, gimple *stmt, int flags)
|
||
|
{
|
||
|
gcc_checking_assert ((flags & SSA_OP_ALL_DEFS) == 0
|
||
|
&& (flags & SSA_OP_USE));
|
||
|
op_iter_init (ptr, stmt, flags);
|
||
|
ptr->iter_type = ssa_op_iter_use;
|
||
|
return op_iter_next_use (ptr);
|
||
|
}
|
||
|
|
||
|
/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
|
||
|
the first def. */
|
||
|
inline def_operand_p
|
||
|
op_iter_init_def (ssa_op_iter *ptr, gimple *stmt, int flags)
|
||
|
{
|
||
|
gcc_checking_assert ((flags & SSA_OP_ALL_USES) == 0
|
||
|
&& (flags & SSA_OP_DEF));
|
||
|
op_iter_init (ptr, stmt, flags);
|
||
|
ptr->iter_type = ssa_op_iter_def;
|
||
|
return op_iter_next_def (ptr);
|
||
|
}
|
||
|
|
||
|
/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
|
||
|
the first operand as a tree. */
|
||
|
inline tree
|
||
|
op_iter_init_tree (ssa_op_iter *ptr, gimple *stmt, int flags)
|
||
|
{
|
||
|
op_iter_init (ptr, stmt, flags);
|
||
|
ptr->iter_type = ssa_op_iter_tree;
|
||
|
return op_iter_next_tree (ptr);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
|
||
|
return NULL. */
|
||
|
inline tree
|
||
|
single_ssa_tree_operand (gimple *stmt, int flags)
|
||
|
{
|
||
|
tree var;
|
||
|
ssa_op_iter iter;
|
||
|
|
||
|
var = op_iter_init_tree (&iter, stmt, flags);
|
||
|
if (op_iter_done (&iter))
|
||
|
return NULL_TREE;
|
||
|
op_iter_next_tree (&iter);
|
||
|
if (op_iter_done (&iter))
|
||
|
return var;
|
||
|
return NULL_TREE;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
|
||
|
return NULL. */
|
||
|
inline use_operand_p
|
||
|
single_ssa_use_operand (gimple *stmt, int flags)
|
||
|
{
|
||
|
use_operand_p var;
|
||
|
ssa_op_iter iter;
|
||
|
|
||
|
var = op_iter_init_use (&iter, stmt, flags);
|
||
|
if (op_iter_done (&iter))
|
||
|
return NULL_USE_OPERAND_P;
|
||
|
op_iter_next_use (&iter);
|
||
|
if (op_iter_done (&iter))
|
||
|
return var;
|
||
|
return NULL_USE_OPERAND_P;
|
||
|
}
|
||
|
|
||
|
/* Return the single virtual use operand in STMT if present. Otherwise
|
||
|
return NULL. */
|
||
|
inline use_operand_p
|
||
|
ssa_vuse_operand (gimple *stmt)
|
||
|
{
|
||
|
if (! gimple_vuse (stmt))
|
||
|
return NULL_USE_OPERAND_P;
|
||
|
return USE_OP_PTR (gimple_use_ops (stmt));
|
||
|
}
|
||
|
|
||
|
|
||
|
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
|
||
|
return NULL. */
|
||
|
inline def_operand_p
|
||
|
single_ssa_def_operand (gimple *stmt, int flags)
|
||
|
{
|
||
|
def_operand_p var;
|
||
|
ssa_op_iter iter;
|
||
|
|
||
|
var = op_iter_init_def (&iter, stmt, flags);
|
||
|
if (op_iter_done (&iter))
|
||
|
return NULL_DEF_OPERAND_P;
|
||
|
op_iter_next_def (&iter);
|
||
|
if (op_iter_done (&iter))
|
||
|
return var;
|
||
|
return NULL_DEF_OPERAND_P;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Return true if there are zero operands in STMT matching the type
|
||
|
given in FLAGS. */
|
||
|
inline bool
|
||
|
zero_ssa_operands (gimple *stmt, int flags)
|
||
|
{
|
||
|
ssa_op_iter iter;
|
||
|
|
||
|
op_iter_init_tree (&iter, stmt, flags);
|
||
|
return op_iter_done (&iter);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Return the number of operands matching FLAGS in STMT. */
|
||
|
inline int
|
||
|
num_ssa_operands (gimple *stmt, int flags)
|
||
|
{
|
||
|
ssa_op_iter iter;
|
||
|
tree t;
|
||
|
int num = 0;
|
||
|
|
||
|
gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI);
|
||
|
FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
|
||
|
num++;
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
/* If there is a single DEF in the PHI node which matches FLAG, return it.
|
||
|
Otherwise return NULL_DEF_OPERAND_P. */
|
||
|
inline tree
|
||
|
single_phi_def (gphi *stmt, int flags)
|
||
|
{
|
||
|
tree def = PHI_RESULT (stmt);
|
||
|
if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
|
||
|
return def;
|
||
|
if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
|
||
|
return def;
|
||
|
return NULL_TREE;
|
||
|
}
|
||
|
|
||
|
/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
|
||
|
be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
|
||
|
inline use_operand_p
|
||
|
op_iter_init_phiuse (ssa_op_iter *ptr, gphi *phi, int flags)
|
||
|
{
|
||
|
tree phi_def = gimple_phi_result (phi);
|
||
|
int comp;
|
||
|
|
||
|
clear_and_done_ssa_iter (ptr);
|
||
|
ptr->done = false;
|
||
|
|
||
|
gcc_checking_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
|
||
|
|
||
|
comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
|
||
|
|
||
|
/* If the PHI node doesn't the operand type we care about, we're done. */
|
||
|
if ((flags & comp) == 0)
|
||
|
{
|
||
|
ptr->done = true;
|
||
|
return NULL_USE_OPERAND_P;
|
||
|
}
|
||
|
|
||
|
ptr->stmt = phi;
|
||
|
ptr->numops = gimple_phi_num_args (phi);
|
||
|
ptr->iter_type = ssa_op_iter_use;
|
||
|
ptr->flags = flags;
|
||
|
return op_iter_next_use (ptr);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Start an iterator for a PHI definition. */
|
||
|
|
||
|
inline def_operand_p
|
||
|
op_iter_init_phidef (ssa_op_iter *ptr, gphi *phi, int flags)
|
||
|
{
|
||
|
tree phi_def = PHI_RESULT (phi);
|
||
|
int comp;
|
||
|
|
||
|
clear_and_done_ssa_iter (ptr);
|
||
|
ptr->done = false;
|
||
|
|
||
|
gcc_checking_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
|
||
|
|
||
|
comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
|
||
|
|
||
|
/* If the PHI node doesn't have the operand type we care about,
|
||
|
we're done. */
|
||
|
if ((flags & comp) == 0)
|
||
|
{
|
||
|
ptr->done = true;
|
||
|
return NULL_DEF_OPERAND_P;
|
||
|
}
|
||
|
|
||
|
ptr->iter_type = ssa_op_iter_def;
|
||
|
/* The first call to op_iter_next_def will terminate the iterator since
|
||
|
all the fields are NULL. Simply return the result here as the first and
|
||
|
therefore only result. */
|
||
|
return PHI_RESULT_PTR (phi);
|
||
|
}
|
||
|
|
||
|
/* Return true is IMM has reached the end of the immediate use stmt list. */
|
||
|
|
||
|
inline bool
|
||
|
end_imm_use_stmt_p (const imm_use_iterator *imm)
|
||
|
{
|
||
|
return (imm->imm_use == imm->end_p);
|
||
|
}
|
||
|
|
||
|
/* Finished the traverse of an immediate use stmt list IMM by removing the
|
||
|
placeholder node from the list. */
|
||
|
|
||
|
inline void
|
||
|
end_imm_use_stmt_traverse (imm_use_iterator *imm)
|
||
|
{
|
||
|
delink_imm_use (&(imm->iter_node));
|
||
|
}
|
||
|
|
||
|
/* Immediate use traversal of uses within a stmt require that all the
|
||
|
uses on a stmt be sequentially listed. This routine is used to build up
|
||
|
this sequential list by adding USE_P to the end of the current list
|
||
|
currently delimited by HEAD and LAST_P. The new LAST_P value is
|
||
|
returned. */
|
||
|
|
||
|
inline use_operand_p
|
||
|
move_use_after_head (use_operand_p use_p, use_operand_p head,
|
||
|
use_operand_p last_p)
|
||
|
{
|
||
|
gcc_checking_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
|
||
|
/* Skip head when we find it. */
|
||
|
if (use_p != head)
|
||
|
{
|
||
|
/* If use_p is already linked in after last_p, continue. */
|
||
|
if (last_p->next == use_p)
|
||
|
last_p = use_p;
|
||
|
else
|
||
|
{
|
||
|
/* Delink from current location, and link in at last_p. */
|
||
|
delink_imm_use (use_p);
|
||
|
link_imm_use_to_list (use_p, last_p);
|
||
|
last_p = use_p;
|
||
|
}
|
||
|
}
|
||
|
return last_p;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* This routine will relink all uses with the same stmt as HEAD into the list
|
||
|
immediately following HEAD for iterator IMM. */
|
||
|
|
||
|
inline void
|
||
|
link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
|
||
|
{
|
||
|
use_operand_p use_p;
|
||
|
use_operand_p last_p = head;
|
||
|
gimple *head_stmt = USE_STMT (head);
|
||
|
tree use = USE_FROM_PTR (head);
|
||
|
ssa_op_iter op_iter;
|
||
|
int flag;
|
||
|
|
||
|
/* Only look at virtual or real uses, depending on the type of HEAD. */
|
||
|
flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
|
||
|
|
||
|
if (gphi *phi = dyn_cast <gphi *> (head_stmt))
|
||
|
{
|
||
|
FOR_EACH_PHI_ARG (use_p, phi, op_iter, flag)
|
||
|
if (USE_FROM_PTR (use_p) == use)
|
||
|
last_p = move_use_after_head (use_p, head, last_p);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (flag == SSA_OP_USE)
|
||
|
{
|
||
|
FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
|
||
|
if (USE_FROM_PTR (use_p) == use)
|
||
|
last_p = move_use_after_head (use_p, head, last_p);
|
||
|
}
|
||
|
else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P)
|
||
|
{
|
||
|
if (USE_FROM_PTR (use_p) == use)
|
||
|
last_p = move_use_after_head (use_p, head, last_p);
|
||
|
}
|
||
|
}
|
||
|
/* Link iter node in after last_p. */
|
||
|
if (imm->iter_node.prev != NULL)
|
||
|
delink_imm_use (&imm->iter_node);
|
||
|
link_imm_use_to_list (&(imm->iter_node), last_p);
|
||
|
}
|
||
|
|
||
|
/* Initialize IMM to traverse over uses of VAR. Return the first statement. */
|
||
|
inline gimple *
|
||
|
first_imm_use_stmt (imm_use_iterator *imm, tree var)
|
||
|
{
|
||
|
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
||
|
imm->imm_use = imm->end_p->next;
|
||
|
imm->next_imm_name = NULL_USE_OPERAND_P;
|
||
|
|
||
|
/* iter_node is used as a marker within the immediate use list to indicate
|
||
|
where the end of the current stmt's uses are. Initialize it to NULL
|
||
|
stmt and use, which indicates a marker node. */
|
||
|
imm->iter_node.prev = NULL_USE_OPERAND_P;
|
||
|
imm->iter_node.next = NULL_USE_OPERAND_P;
|
||
|
imm->iter_node.loc.stmt = NULL;
|
||
|
imm->iter_node.use = NULL;
|
||
|
|
||
|
if (end_imm_use_stmt_p (imm))
|
||
|
return NULL;
|
||
|
|
||
|
link_use_stmts_after (imm->imm_use, imm);
|
||
|
|
||
|
return USE_STMT (imm->imm_use);
|
||
|
}
|
||
|
|
||
|
/* Bump IMM to the next stmt which has a use of var. */
|
||
|
|
||
|
inline gimple *
|
||
|
next_imm_use_stmt (imm_use_iterator *imm)
|
||
|
{
|
||
|
imm->imm_use = imm->iter_node.next;
|
||
|
if (end_imm_use_stmt_p (imm))
|
||
|
{
|
||
|
if (imm->iter_node.prev != NULL)
|
||
|
delink_imm_use (&imm->iter_node);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
link_use_stmts_after (imm->imm_use, imm);
|
||
|
return USE_STMT (imm->imm_use);
|
||
|
}
|
||
|
|
||
|
/* This routine will return the first use on the stmt IMM currently refers
|
||
|
to. */
|
||
|
|
||
|
inline use_operand_p
|
||
|
first_imm_use_on_stmt (imm_use_iterator *imm)
|
||
|
{
|
||
|
imm->next_imm_name = imm->imm_use->next;
|
||
|
return imm->imm_use;
|
||
|
}
|
||
|
|
||
|
/* Return TRUE if the last use on the stmt IMM refers to has been visited. */
|
||
|
|
||
|
inline bool
|
||
|
end_imm_use_on_stmt_p (const imm_use_iterator *imm)
|
||
|
{
|
||
|
return (imm->imm_use == &(imm->iter_node));
|
||
|
}
|
||
|
|
||
|
/* Bump to the next use on the stmt IMM refers to, return NULL if done. */
|
||
|
|
||
|
inline use_operand_p
|
||
|
next_imm_use_on_stmt (imm_use_iterator *imm)
|
||
|
{
|
||
|
imm->imm_use = imm->next_imm_name;
|
||
|
if (end_imm_use_on_stmt_p (imm))
|
||
|
return NULL_USE_OPERAND_P;
|
||
|
else
|
||
|
{
|
||
|
imm->next_imm_name = imm->imm_use->next;
|
||
|
return imm->imm_use;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Delink all immediate_use information for STMT. */
|
||
|
inline void
|
||
|
delink_stmt_imm_use (gimple *stmt)
|
||
|
{
|
||
|
ssa_op_iter iter;
|
||
|
use_operand_p use_p;
|
||
|
|
||
|
if (ssa_operands_active (cfun))
|
||
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_ALL_USES)
|
||
|
delink_imm_use (use_p);
|
||
|
}
|
||
|
|
||
|
#endif /* GCC_TREE_SSA_ITERATORS_H */
|