216 lines
6.1 KiB
C
216 lines
6.1 KiB
C
|
/* Template class for Dijkstra's algorithm on directed graphs.
|
||
|
Copyright (C) 2019-2023 Free Software Foundation, Inc.
|
||
|
Contributed by David Malcolm <dmalcolm@redhat.com>.
|
||
|
|
||
|
This file is part of GCC.
|
||
|
|
||
|
GCC is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 3, or (at your option)
|
||
|
any later version.
|
||
|
|
||
|
GCC is distributed in the hope that it will be useful, but
|
||
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with GCC; see the file COPYING3. If not see
|
||
|
<http://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#ifndef GCC_SHORTEST_PATHS_H
|
||
|
#define GCC_SHORTEST_PATHS_H
|
||
|
|
||
|
#include "timevar.h"
|
||
|
|
||
|
enum shortest_path_sense
|
||
|
{
|
||
|
/* Find the shortest path from the given origin node to each
|
||
|
node in the graph. */
|
||
|
SPS_FROM_GIVEN_ORIGIN,
|
||
|
|
||
|
/* Find the shortest path from each node in the graph to the
|
||
|
given target node. */
|
||
|
SPS_TO_GIVEN_TARGET
|
||
|
};
|
||
|
|
||
|
/* A record of the shortest path for each node relative to a special
|
||
|
"given node", either:
|
||
|
SPS_FROM_GIVEN_ORIGIN:
|
||
|
from the given origin node to each node in a graph, or
|
||
|
SPS_TO_GIVEN_TARGET:
|
||
|
from each node in a graph to the given target node.
|
||
|
|
||
|
The constructor runs Dijkstra's algorithm, and the results are
|
||
|
stored in this class. */
|
||
|
|
||
|
template <typename GraphTraits, typename Path_t>
|
||
|
class shortest_paths
|
||
|
{
|
||
|
public:
|
||
|
typedef typename GraphTraits::graph_t graph_t;
|
||
|
typedef typename GraphTraits::node_t node_t;
|
||
|
typedef typename GraphTraits::edge_t edge_t;
|
||
|
typedef Path_t path_t;
|
||
|
|
||
|
shortest_paths (const graph_t &graph, const node_t *given_node,
|
||
|
enum shortest_path_sense sense);
|
||
|
|
||
|
path_t get_shortest_path (const node_t *other_node) const;
|
||
|
int get_shortest_distance (const node_t *other_node) const;
|
||
|
|
||
|
private:
|
||
|
const graph_t &m_graph;
|
||
|
|
||
|
enum shortest_path_sense m_sense;
|
||
|
|
||
|
/* For each node (by index), the minimal distance between that node
|
||
|
and the given node (with direction depending on m_sense). */
|
||
|
auto_vec<int> m_dist;
|
||
|
|
||
|
/* For each node (by index):
|
||
|
SPS_FROM_GIVEN_ORIGIN:
|
||
|
the previous edge in the shortest path from the origin,
|
||
|
SPS_TO_GIVEN_TARGET:
|
||
|
the next edge in the shortest path to the target. */
|
||
|
auto_vec<const edge_t *> m_best_edge;
|
||
|
};
|
||
|
|
||
|
/* shortest_paths's constructor.
|
||
|
|
||
|
Use Dijkstra's algorithm relative to GIVEN_NODE to populate m_dist and
|
||
|
m_best_edge with enough information to be able to generate Path_t instances
|
||
|
to give the shortest path...
|
||
|
SPS_FROM_GIVEN_ORIGIN: to each node in a graph from the origin node, or
|
||
|
SPS_TO_GIVEN_TARGET: from each node in a graph to the target node. */
|
||
|
|
||
|
template <typename GraphTraits, typename Path_t>
|
||
|
inline
|
||
|
shortest_paths<GraphTraits, Path_t>::
|
||
|
shortest_paths (const graph_t &graph,
|
||
|
const node_t *given_node,
|
||
|
enum shortest_path_sense sense)
|
||
|
: m_graph (graph),
|
||
|
m_sense (sense),
|
||
|
m_dist (graph.m_nodes.length ()),
|
||
|
m_best_edge (graph.m_nodes.length ())
|
||
|
{
|
||
|
auto_timevar tv (TV_ANALYZER_SHORTEST_PATHS);
|
||
|
|
||
|
auto_vec<int> queue (graph.m_nodes.length ());
|
||
|
|
||
|
for (unsigned i = 0; i < graph.m_nodes.length (); i++)
|
||
|
{
|
||
|
m_dist.quick_push (INT_MAX);
|
||
|
m_best_edge.quick_push (NULL);
|
||
|
queue.quick_push (i);
|
||
|
}
|
||
|
m_dist[given_node->m_index] = 0;
|
||
|
|
||
|
while (queue.length () > 0)
|
||
|
{
|
||
|
/* Get minimal distance in queue.
|
||
|
FIXME: this is O(N^2); replace with a priority queue. */
|
||
|
int idx_with_min_dist = -1;
|
||
|
int idx_in_queue_with_min_dist = -1;
|
||
|
int min_dist = INT_MAX;
|
||
|
for (unsigned i = 0; i < queue.length (); i++)
|
||
|
{
|
||
|
int idx = queue[i];
|
||
|
if (m_dist[queue[i]] < min_dist)
|
||
|
{
|
||
|
min_dist = m_dist[idx];
|
||
|
idx_with_min_dist = idx;
|
||
|
idx_in_queue_with_min_dist = i;
|
||
|
}
|
||
|
}
|
||
|
if (idx_with_min_dist == -1)
|
||
|
break;
|
||
|
gcc_assert (idx_in_queue_with_min_dist != -1);
|
||
|
|
||
|
// FIXME: this is confusing: there are two indices here
|
||
|
|
||
|
queue.unordered_remove (idx_in_queue_with_min_dist);
|
||
|
|
||
|
node_t *n
|
||
|
= static_cast <node_t *> (m_graph.m_nodes[idx_with_min_dist]);
|
||
|
|
||
|
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
|
||
|
{
|
||
|
int i;
|
||
|
edge_t *succ;
|
||
|
FOR_EACH_VEC_ELT (n->m_succs, i, succ)
|
||
|
{
|
||
|
// TODO: only for dest still in queue
|
||
|
node_t *dest = succ->m_dest;
|
||
|
int alt = m_dist[n->m_index] + 1;
|
||
|
if (alt < m_dist[dest->m_index])
|
||
|
{
|
||
|
m_dist[dest->m_index] = alt;
|
||
|
m_best_edge[dest->m_index] = succ;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int i;
|
||
|
edge_t *pred;
|
||
|
FOR_EACH_VEC_ELT (n->m_preds, i, pred)
|
||
|
{
|
||
|
// TODO: only for dest still in queue
|
||
|
node_t *src = pred->m_src;
|
||
|
int alt = m_dist[n->m_index] + 1;
|
||
|
if (alt < m_dist[src->m_index])
|
||
|
{
|
||
|
m_dist[src->m_index] = alt;
|
||
|
m_best_edge[src->m_index] = pred;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Generate an Path_t instance giving the shortest path between OTHER_NODE
|
||
|
and the given node.
|
||
|
|
||
|
SPS_FROM_GIVEN_ORIGIN: shortest path from given origin node to OTHER_NODE
|
||
|
SPS_TO_GIVEN_TARGET: shortest path from OTHER_NODE to given target node.
|
||
|
|
||
|
If no such path exists, return an empty path. */
|
||
|
|
||
|
template <typename GraphTraits, typename Path_t>
|
||
|
inline Path_t
|
||
|
shortest_paths<GraphTraits, Path_t>::
|
||
|
get_shortest_path (const node_t *other_node) const
|
||
|
{
|
||
|
Path_t result;
|
||
|
|
||
|
while (m_best_edge[other_node->m_index])
|
||
|
{
|
||
|
result.m_edges.safe_push (m_best_edge[other_node->m_index]);
|
||
|
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
|
||
|
other_node = m_best_edge[other_node->m_index]->m_src;
|
||
|
else
|
||
|
other_node = m_best_edge[other_node->m_index]->m_dest;
|
||
|
}
|
||
|
|
||
|
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
|
||
|
result.m_edges.reverse ();
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/* Get the shortest distance...
|
||
|
SPS_FROM_GIVEN_ORIGIN: ...from given origin node to OTHER_NODE
|
||
|
SPS_TO_GIVEN_TARGET: ...from OTHER_NODE to given target node. */
|
||
|
|
||
|
template <typename GraphTraits, typename Path_t>
|
||
|
inline int
|
||
|
shortest_paths<GraphTraits, Path_t>::
|
||
|
get_shortest_distance (const node_t *other_node) const
|
||
|
{
|
||
|
return m_dist[other_node->m_index];
|
||
|
}
|
||
|
|
||
|
#endif /* GCC_SHORTEST_PATHS_H */
|