geos/opt/lib/gcc/i686-elf/13.2.0/plugin/include/range-op.h

319 lines
10 KiB
C
Raw Normal View History

2024-03-26 15:15:06 +01:00
/* Header file for range operator class.
Copyright (C) 2017-2023 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
and Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_RANGE_OP_H
#define GCC_RANGE_OP_H
// This class is implemented for each kind of operator supported by
// the range generator. It serves various purposes.
//
// 1 - Generates range information for the specific operation between
// two ranges. This provides the ability to fold ranges for an
// expression.
//
// 2 - Performs range algebra on the expression such that a range can be
// adjusted in terms of one of the operands:
//
// def = op1 + op2
//
// Given a range for def, we can adjust the range so that it is in
// terms of either operand.
//
// op1_range (def_range, op2) will adjust the range in place so it
// is in terms of op1. Since op1 = def - op2, it will subtract
// op2 from each element of the range.
//
// 3 - Creates a range for an operand based on whether the result is 0 or
// non-zero. This is mostly for logical true false, but can serve other
// purposes.
// ie 0 = op1 - op2 implies op2 has the same range as op1.
class range_operator
{
friend class range_op_table;
public:
range_operator () : m_code (ERROR_MARK) { }
// Perform an operation between 2 ranges and return it.
virtual bool fold_range (irange &r, tree type,
const irange &lh,
const irange &rh,
relation_trio = TRIO_VARYING) const;
// Return the range for op[12] in the general case. LHS is the range for
// the LHS of the expression, OP[12]is the range for the other
//
// The operand and the result is returned in R.
//
// TYPE is the expected type of the range.
//
// Return TRUE if the operation is performed and a valid range is available.
//
// i.e. [LHS] = ??? + OP2
// is re-formed as R = [LHS] - OP2.
virtual bool op1_range (irange &r, tree type,
const irange &lhs,
const irange &op2,
relation_trio = TRIO_VARYING) const;
virtual bool op2_range (irange &r, tree type,
const irange &lhs,
const irange &op1,
relation_trio = TRIO_VARYING) const;
// The following routines are used to represent relations between the
// various operations. If the caller knows where the symbolics are,
// it can query for relationships between them given known ranges.
// the optional relation passed in is the relation between op1 and op2.
virtual relation_kind lhs_op1_relation (const irange &lhs,
const irange &op1,
const irange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind lhs_op2_relation (const irange &lhs,
const irange &op1,
const irange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind op1_op2_relation (const irange &lhs) const;
protected:
// Perform an integral operation between 2 sub-ranges and return it.
virtual void wi_fold (irange &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
// Effect of relation for generic fold_range clients.
virtual bool op1_op2_relation_effect (irange &lhs_range, tree type,
const irange &op1_range,
const irange &op2_range,
relation_kind rel) const;
// Called by fold range to split small subranges into parts.
void wi_fold_in_parts (irange &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
// Called by fold range to split small subranges into parts when op1 == op2
void wi_fold_in_parts_equiv (irange &r, tree type,
const wide_int &lb,
const wide_int &ub,
unsigned limit) const;
// Tree code of the range operator or ERROR_MARK if unknown.
tree_code m_code;
};
// Like range_operator above, but for floating point operators.
class range_operator_float
{
public:
virtual bool fold_range (frange &r, tree type,
const frange &lh,
const frange &rh,
relation_trio = TRIO_VARYING) const;
virtual void rv_fold (REAL_VALUE_TYPE &lb, REAL_VALUE_TYPE &ub,
bool &maybe_nan,
tree type,
const REAL_VALUE_TYPE &lh_lb,
const REAL_VALUE_TYPE &lh_ub,
const REAL_VALUE_TYPE &rh_lb,
const REAL_VALUE_TYPE &rh_ub,
relation_kind) const;
// Unary operations have the range of the LHS as op2.
virtual bool fold_range (irange &r, tree type,
const frange &lh,
const irange &rh,
relation_trio = TRIO_VARYING) const;
virtual bool fold_range (irange &r, tree type,
const frange &lh,
const frange &rh,
relation_trio = TRIO_VARYING) const;
virtual bool op1_range (frange &r, tree type,
const frange &lhs,
const frange &op2,
relation_trio = TRIO_VARYING) const;
virtual bool op1_range (frange &r, tree type,
const irange &lhs,
const frange &op2,
relation_trio = TRIO_VARYING) const;
virtual bool op2_range (frange &r, tree type,
const frange &lhs,
const frange &op1,
relation_trio = TRIO_VARYING) const;
virtual bool op2_range (frange &r, tree type,
const irange &lhs,
const frange &op1,
relation_trio = TRIO_VARYING) const;
virtual relation_kind lhs_op1_relation (const frange &lhs,
const frange &op1,
const frange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind lhs_op1_relation (const irange &lhs,
const frange &op1,
const frange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind lhs_op2_relation (const frange &lhs,
const frange &op1,
const frange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind lhs_op2_relation (const irange &lhs,
const frange &op1,
const frange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind op1_op2_relation (const irange &lhs) const;
virtual relation_kind op1_op2_relation (const frange &lhs) const;
};
class range_op_handler
{
public:
range_op_handler ();
range_op_handler (enum tree_code code, tree type);
inline operator bool () const { return m_valid; }
bool fold_range (vrange &r, tree type,
const vrange &lh,
const vrange &rh,
relation_trio = TRIO_VARYING) const;
bool op1_range (vrange &r, tree type,
const vrange &lhs,
const vrange &op2,
relation_trio = TRIO_VARYING) const;
bool op2_range (vrange &r, tree type,
const vrange &lhs,
const vrange &op1,
relation_trio = TRIO_VARYING) const;
relation_kind lhs_op1_relation (const vrange &lhs,
const vrange &op1,
const vrange &op2,
relation_kind = VREL_VARYING) const;
relation_kind lhs_op2_relation (const vrange &lhs,
const vrange &op1,
const vrange &op2,
relation_kind = VREL_VARYING) const;
relation_kind op1_op2_relation (const vrange &lhs) const;
protected:
void set_op_handler (enum tree_code code, tree type);
bool m_valid;
range_operator *m_int;
range_operator_float *m_float;
};
extern bool range_cast (vrange &, tree type);
extern void wi_set_zero_nonzero_bits (tree type,
const wide_int &, const wide_int &,
wide_int &maybe_nonzero,
wide_int &mustbe_nonzero);
// op1_op2_relation methods that are the same across irange and frange.
relation_kind equal_op1_op2_relation (const irange &lhs);
relation_kind not_equal_op1_op2_relation (const irange &lhs);
relation_kind lt_op1_op2_relation (const irange &lhs);
relation_kind le_op1_op2_relation (const irange &lhs);
relation_kind gt_op1_op2_relation (const irange &lhs);
relation_kind ge_op1_op2_relation (const irange &lhs);
enum bool_range_state { BRS_FALSE, BRS_TRUE, BRS_EMPTY, BRS_FULL };
bool_range_state get_bool_state (vrange &r, const vrange &lhs, tree val_type);
// If the range of either op1 or op2 is undefined, set the result to
// varying and return TRUE. If the caller truly cares about a result,
// they should pass in a varying if it has an undefined that it wants
// treated as a varying.
inline bool
empty_range_varying (vrange &r, tree type,
const vrange &op1, const vrange & op2)
{
if (op1.undefined_p () || op2.undefined_p ())
{
r.set_varying (type);
return true;
}
else
return false;
}
// For relation opcodes, first try to see if the supplied relation
// forces a true or false result, and return that.
// Then check for undefined operands. If none of this applies,
// return false.
inline bool
relop_early_resolve (irange &r, tree type, const vrange &op1,
const vrange &op2, relation_trio trio,
relation_kind my_rel)
{
relation_kind rel = trio.op1_op2 ();
// If known relation is a complete subset of this relation, always true.
if (relation_union (rel, my_rel) == my_rel)
{
r = range_true (type);
return true;
}
// If known relation has no subset of this relation, always false.
if (relation_intersect (rel, my_rel) == VREL_UNDEFINED)
{
r = range_false (type);
return true;
}
// If either operand is undefined, return VARYING.
if (empty_range_varying (r, type, op1, op2))
return true;
return false;
}
// This implements the range operator tables as local objects.
class range_op_table
{
public:
range_operator *operator[] (enum tree_code code);
protected:
void set (enum tree_code code, range_operator &op);
private:
range_operator *m_range_tree[MAX_TREE_CODES];
};
// Like above, but for floating point operators.
class floating_op_table
{
public:
floating_op_table ();
range_operator_float *operator[] (enum tree_code code);
private:
void set (enum tree_code code, range_operator_float &op);
range_operator_float *m_range_tree[MAX_TREE_CODES];
};
// This holds the range op table for floating point operations.
extern floating_op_table *floating_tree_table;
extern range_operator *ptr_op_widen_mult_signed;
extern range_operator *ptr_op_widen_mult_unsigned;
extern range_operator *ptr_op_widen_plus_signed;
extern range_operator *ptr_op_widen_plus_unsigned;
#endif // GCC_RANGE_OP_H